We present a hand specialized for climbing unstructured rocky surfaces. Articulated fingers achieve grasps commonly used by human climbers. The gripping surfaces are equipped with dense arrays of spines that engage with asperities on hard rough materials. A load-sharing transmission system divides the shear contact force among spine tiles on each phalanx to prevent premature spine slippage or grasp failure. Taking advantage of the hand’s kinematic and load-sharing properties, the wrench space of achievable forces and moments can be computed rapidly. Bench-top tests show agreement with the model, with average wrench space errors of 10–15%, despite the stochastic nature of spine/surface interaction. The model provides design guidelines and control strategy insights for the SpinyHand and can inform future work.

References

References
1.
Asbeck
,
A. T.
,
Kim
,
S.
,
Cutkosky
,
M. R.
,
Provancher
,
W. R.
, and
Lanzetta
,
M.
,
2006
, “
Scaling Hard Vertical Surfaces With Compliant Microspine Arrays
,”
Int. J. Rob. Res.
,
25
(
12
), pp.
1165
1179
.
2.
Spenko
,
M. J.
,
Haynes
,
G. C.
,
Saunders
,
J. A.
,
Cutkosky
,
M. R.
,
Rizzi
,
A. A.
,
Full
,
R. J.
, and
Koditschek
,
D. E.
,
2008
, “
Biologically Inspired Climbing With a Hexapedal Robot
,”
J. Field Rob.
,
25
, pp.
223
242
.
3.
Daltorio
,
K. A.
,
Wei
,
T. E.
,
Horchler
,
A. D.
,
Southard
,
L.
,
Wile
,
G. D.
,
Quinn
,
R. D.
,
Gorb
,
S. N.
, and
Ritzmann
,
R. E.
,
2009
, “
Mini-Whegs tm Climbs Steep Surfaces Using Insect-Inspired Attachment Mechanisms
,”
Int. J. Rob. Res.
,
28
(
2
), pp.
285
302
.
4.
Sintov
,
A.
,
Avramovich
,
T.
, and
Shapiro
,
A.
,
2011
, “
Design and Motion Planning of an Autonomous Climbing Robot With Claws
,”
Rob. Auton. Syst.
,
59
(
11
), pp.
1008
1019
.
5.
Lynch
,
G. A.
,
Clark
,
J. E.
,
Lin
,
P.-C.
, and
Koditschek
,
D. E.
,
2012
, “
A Bioinspired Dynamical Vertical Climbing Robot
,”
Int. J. Rob. Res.
,
31
(
8
), pp.
974
996
.
6.
Lam
,
T. L.
, and
Xu
,
Y.
,
2012
, “
Biologically Inspired Tree-Climbing Robot With Continuum Maneuvering Mechanism
,”
J. Field Rob.
,
29
(
6
), pp.
843
860
.
7.
Parness
,
A.
,
Frost
,
M.
,
Thatte
,
N.
,
King
,
J. P.
,
Witkoe
,
K.
,
Nevarez
,
M.
,
Garrett
,
M.
,
Aghazarian
,
H.
, and
Kennedy
,
B.
,
2013
, “
Gravity-Independent Rock-Climbing Robot and a Sample Acquisition Tool With Microspine Grippers
,”
J. Field Rob.
,
30
(
6
), pp.
897
915
.
8.
Parness
,
A.
,
Carpenter
,
K. C.
, and
Wiltsie
,
N.
,
2015
, “
Terrain Traversing Device Having a Wheel With Microhooks
,” US Patent No. 8,978,807.
9.
Liu
,
Y.
,
Sun
,
S.
,
Wu
,
X.
, and
Mei
,
T.
,
2015
, “
A Wheeled Wall-Climbing Robot With Bio-Inspired Spine Mechanisms
,”
J. Bionic. Eng.
,
12
(
1
), pp.
17
28
.
10.
Lee
,
J. S.
, and
Fearing
,
R. S.
,
2015
, “
Anisotropic Collapsible Leg Spines for Increased Millirobot Traction
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
4547
4553
.
11.
Xu
,
F.
,
Wang
,
B.
,
Shen
,
J.
,
Hu
,
J.
, and
Jiang
,
G.
,
2017
, “
Design and Realization of the Claw Gripper System of a Climbing Robot
,”
J. Intelligent Rob. Syst.
,
89
, pp.
1
17
.
12.
Parness
,
A.
,
Abcouwer
,
N.
,
Fuller
,
C.
,
Wiltsie
,
N.
,
Nash
,
J.
, and
Kennedy
,
B.
,
2017
, “
Lemur 3: A Limbed Climbing Robot for Extreme Terrain Mobility in Space
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore, Singapore
,
May 29–June 3
, pp.
5467
5473
.
13.
Karumanchi
,
S.
,
Edelberg
,
K.
,
Baldwin
,
I.
,
Nash
,
J.
,
Reid
,
J.
,
Bergh
,
C.
,
Leichty
,
J.
,
Carpenter
,
K.
,
Shekels
,
M.
,
Gildner
,
M.
,
Newill-Smith
,
D.
,
Carlton
,
J.
,
Koehler
,
J.
,
Dobreva
,
T.
,
Frost
,
M.
,
Hebert
,
P.
,
Borders
,
J.
,
Ma
,
J.
,
Douillard
,
B.
,
Backes
,
P.
,
Kennedy
,
B.
,
Satzinger
,
B.
,
Lau
,
C.
,
Byl
,
K.
,
Shankar
,
K.
, and
Burdick
,
J.
,
2015
, “
Team Robosimian: Semi-Autonomous Mobile Manipulation at The 2015 Darpa Robotics Challenge Finals
,”
J. Field Rob.
,
34
(
2
), pp.
305
332
.
14.
Dai
,
Z.
,
Gorb
,
S. N.
, and
Schwarz
,
U.
,
2002
, “
Roughness-Dependent Friction Force of the Tarsal Claw System in the Beetle Pachnoda Marginata (Coleoptera, Scarabaeidae)
,” ,
205
(
16
), pp.
2479
2488
.
15.
Asbeck
,
A. T.
, and
Cutkosky
,
M. R.
,
2012
, “
Designing Compliant Spine Mechanisms for Climbing
,”
J. Mech. Robot.
,
4
(
3
), pp.
031007
.
16.
Wang
,
S.
,
Jiang
,
H.
, and
Cutkosky
,
M. R.
,
2017
, “
Design and Modeling Of Linearly-Constrained Compliant Spines for Human-Scale Locomotion on Rocky Surfaces
,”
Int. J. Rob. Res.
,
36
(
9
), pp.
985
999
.
17.
Wang
,
S.
,
Jiang
,
H.
, and
Cutkosky
,
M. R.
,
2016
, “
A Palm for a Rock Climbing Robot Based on Dense Arrays of Micro-Spines
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
52
59
.
18.
Prattichizzo
,
D.
, and
Trinkle
,
J. C.
,
2016
, “Grasping,”
Springer Handbook of Robotics
,
Springer
,
New York
, pp.
955
988
.
19.
Melchiorri
,
C.
, and
Kaneko
,
M.
,
2016
, “Robot Hands,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer International Publishing
,
New York
, pp.
463
480
.
20.
Bicchi
,
A.
, and
Kumar
,
V.
,
2000
, “
Robotic Grasping and Contact: A Review
,”
IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 24–28
, Vol.
1
, pp.
348
353
.
21.
Boyd
,
S. P.
, and
Wegbreit
,
B.
,
2007
, “
Fast Computation of Optimal Contact Forces
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1117
1132
.
22.
León
,
B.
,
Morales
,
A.
, and
Sancho-Bru
,
J.
,
2014
,
Robot Grasping Foundations
,
Springer International Publishing
,
Cham
, pp.
15
31
.
23.
Jiang
,
H.
,
Wang
,
S.
, and
Cutkosky
,
M. R.
,
2018
, “
Stochastic Models of Compliant Spine Arrays for Rough Surface Grasping
,”
Int. J. Rob. Res.
,
37
(
7
), pp.
669
687
.
24.
Baril
,
M.
,
Laliberté
,
T.
,
Guay
,
F.
, and
Gosselin
,
C.
,
2010
, “
Static Analysis of Single-Input/Multiple-Output Tendon-Driven Underactuated Mechanisms for Robotic Hands
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
, pp.
155
164
.
25.
Catalano
,
M.
,
Grioli
,
G.
,
Farnioli
,
E.
,
Serio
,
A.
,
Piazza
,
C.
, and
Bicchi
,
A.
,
2014
, “
Adaptive Synergies for the Design and Control of the Pisa/IIT Softhand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
768
782
.
26.
Hauser
,
K.
,
Wang
,
S.
, and
Cutkosky
,
M. R.
,
2018
, “
Efficient Equilibrium Testing Under Adhesion and Anisotropy Using Empirical Contact Force Models
,”
IEEE Trans. Robot.
,
34
(
5
), pp.
1157
1169
.
27.
Martín
,
J. M.
,
Campo
,
V. L. D.
,
Román
,
M. L.
,
Horrillo
,
J. M. G.-V.
, and
Navarrete
,
J. S. G.
,
2013
, “
Description of the Finger Mechanical Load of Climbers of Different Levels During Different Hand Grips in Sport Climbing
,”
J. Sports. Sci.
,
31
(
15
), pp.
1713
1721
.
28.
Fuss
,
F. K.
, and
Niegl
,
G.
,
2008
, “
Instrumented Climbing Holds and Performance Analysis in Sport Climbing
,”
Sports Technol.
,
1
(
6
), pp.
301
313
.
29.
Amca
,
A. M.
,
Vigouroux
,
L.
,
Aritan
,
S.
, and
Berton
,
E.
,
2012
, “
Effect of Hold Depth and Grip Technique on Maximal Finger Forces in Rock Climbing
,”
J. Sports. Sci.
,
30
(
7
), pp.
669
677
.
30.
Quaine
,
F.
,
Vigouroux
,
L.
, and
Martin
,
L.
,
2003
, “
Effect of Simulated Rock Climbing Finger Postures on Force Sharing Among the Fingers
,”
Clinical Biomec.
,
18
(
5
), pp.
385
388
.
31.
Hawkes
,
E. W.
,
Jiang
,
H.
,
Christensen
,
D. L.
,
Han
,
A. K.
, and
Cutkosky
,
M. R.
,
2017
, “
Grasping Without Squeezing: Design and Modeling of Shear-Activated Grippers
,”
IEEE Trans. Robot.
,
34
, pp.
303
316
.
32.
Glick
,
P.
,
Suresh
,
S.
,
Ruffatto
,
I. I. I.
,
Tolley
,
M. T.
, and
Parness
,
A.
,
2018
, “
A Soft Robotic Gripper With Gecko-Inspired Adhesive
,”
IEEE Rob. Auto. Lett.
,
3
, pp.
903
910
.
33.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2008
, Underactuated Robotic Hands (Springer Tracts in Advanced Robotics), Vol.
40
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
34.
Demers
,
L.-A. A.
, and
Gosselin
,
C.
,
2009
, “
Kinematic Design of an Ejection-Free Underactuated Anthropomorphic Finger
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
2086
2091
.
35.
Stuart
,
H.
,
Wang
,
S.
,
Khatib
,
O.
, and
Cutkosky
,
M. R.
,
2017
, “
The Ocean One Hands: An Adaptive Design for Robust Marine Manipulation
,”
Int. J. Rob. Res.
,
36
(
2
), pp.
150
166
.
36.
Hauser
,
K.
,
Wang
,
S.
, and
Cutkosky
,
M.
,
2017
, “
Efficient Equilibrium Testing Under Adhesion and Anisotropy Using Empirical Contact Force Models
,”
Proceedings of Robotics: Science and Systems (RSS)
,
Cambridge, MA
.
37.
Cutkosky
,
M. R.
, and
Kao
,
I.
,
1989
, “
Computing and Controlling Compliance of a Robotic Hand
,”
IEEE Trans. Rob. Autom.
,
5
(
2
), pp.
151
165
.
38.
Baraff
,
D.
,
1994
, “
Fast Contact Force Computation for Nonpenetrating Rigid Bodies
,”
SIGGRAPH ’94 Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques
,
ACM
,
New York
, pp.
23
34
.
39.
Wu
,
X. A.
,
Suresh
,
S. A.
,
Jiang
,
H.
,
Ulmen
,
J. V.
,
Hawkes
,
E. W.
,
Christensen
,
D. L.
, and
Cutkosky
,
M. R.
,
2015
, “
Tactile Sensing for Gecko-Inspired Adhesion
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
1501
1507
.
40.
Wang
,
S.
,
2016
, Simgrasp: Grasp simulation package. https://bitbucket.org/shiquan/sim-grasp
41.
Aukes
,
D. M.
,
Heyneman
,
B.
,
Ulmen
,
J.
,
Stuart
,
H.
,
Cutkosky
,
M. R.
,
Kim
,
S.
,
Garcia
,
P.
, and
Edsinger
,
A.
,
2014
, “
Design and Testing of a Selectively Compliant Underactuated Hand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
721
735
.
This content is only available via PDF.
You do not currently have access to this content.