Taking the well-known Tricept robot as an example, this paper presents a semi-analytical approach for elastodynamic modeling of five or six degrees of freedom (DOF) hybrid robots composed of a 3-DOF parallel mechanism plus a 2- or 3-DOF wrist. Drawing heavily on screw theory combined with structural dynamics, the kinetic and elastic potential energies of the parallel mechanism and of the wrist are formulated using the dual properties of twist/wrench systems and a static condensation technique. This results in a 9-DOF dynamic model that enables the lower-order dynamic behavior over the entire workspace to be estimated in a very efficient and accurate manner. The lower-order natural frequencies and mode shapes estimated by the proposed approach are shown to have very good agreement with those obtained by a full-order finite element (FE) model. It thus provides a very time-effective tool for optimal design within a virtual prototyping framework for hybrid robot-based machine tools.

References

References
1.
Uriarte
,
L.
,
Zatarain
,
M.
,
Axinte
,
D.
,
Yagüe-Fabra
,
J.
,
Ihlenfeldt
,
S.
,
Eguia
,
J.
, and
Olarra
,
A.
,
2013
, “
Machine Tools for Large Parts
,”
CIRP Ann.
,
62
(
2
), pp.
731
750
.
2.
Neumann
K. E.
,
2002
, “
Tricept Application
,”
Proceedings of the 3rd Chemnitz Parallel Kinematics Seminar
,
Zwickau, Germany
, pp.
547
551
.
3.
Neumann
K. E.
,
2006
, “
The Key to Aerospace Automation
,”
SAE Aerospace Manufacturing and Automated Fastening Conference and Exhibition
,
Detroit
, Paper No. 2006-01-3144.
4.
Law
,
M.
,
Altintas
,
Y.
, and
Phani
,
A. S.
,
2013
, “
Rapid Evaluation and Optimization of Machine Tools with Position-dependent Stability
,”
Int. J. Mach. Tools Manuf.
,
68
, pp.
81
90
.
5.
Zulaika
,
J. J.
,
Campa
,
F. J.
, and
Lopez de Lacalle
,
L. N.
,
2011
, “
An Integrated Process–Machine Approach for Designing Productive and Lightweight Milling Machines
,”
Int. J. Mach. Tools Manuf.
,
51
(
7
), pp.
591
604
.
6.
Altintas
,
Y.
,
Brecher
,
C.
,
Weck
,
M.
, and
Witt
,
S.
,
2005
, “
Virtual Machine Tool
,”
CIRP Ann.
,
54
(
2
), pp.
115
138
.
7.
Son
,
H.
,
Choi
,
H. J.
, and
Park
,
H. W.
,
2010
, “
Design and Dynamic Analysis of an Arch-type Desktop Reconfigurable Machine
,”
Int. J. Mach. Tools Manuf.
,
50
(
6
), pp.
575
584
.
8.
Palmieri
,
G.
,
Martarelli
,
M.
,
Palpacelli
,
M. C.
, and
Carbonari
,
L.
,
2014
, “
Configuration-Dependent Modal Analysis of a Cartesian Parallel Kinematics Manipulator: Numerical Modeling and Experimental Validation
,”
Meccanica
,
49
(
4
), pp.
961
972
.
9.
Ma
,
Y.
,
Niu
,
W.
,
Luo
,
Z.
,
Yin
,
F.
, and
Huang
,
T.
,
2016
, “
Static and Dynamic Performance Evaluation of a 3-DOF Spindle Head Using CAD-CAE Integration Methodology
,”
Robot Comput.-Integr. Manuf.
,
41
, pp.
1
12
.
10.
Hong
,
D.
,
Kim
,
S.
,
Choi
,
W. C.
, and
Song
,
J.-B.
,
2003
, “
Analysis of Machining Stability for a Parallel Machine Tool
,”
Mech. Based Des. Struct. Mach.
,
31
(
4
), pp.
509
528
.
11.
Tyapin
,
I.
, and
Hovland
,
G.
,
2011
, “
The Gantry-Tau Parallel Kinematic Machine—Kinematic and Elastodynamic Design Optimisation
,”
Meccanica
,
46
(
1
), pp.
113
129
.
12.
Portman
,
V. T.
,
Chapsky
,
V. S.
, and
Shneor
,
Y.
,
2014
, “
Evaluation and Optimization of Dynamic Stiffness Values of the PKMs: Collinear Stiffness Value Approach
,”
Mech. Mach. Theory
,
74
(
6
), pp.
216
244
.
13.
Wang
,
X.
, and
Mills
,
J. K.
,
2006
, “
Dynamic Modeling of a Flexible-link Planar Parallel Platform Using a Substructuring Approach
,”
Mech. Mach. Theory
,
41
(
6
), pp.
671
687
.
14.
Zhou
,
Z.
,
Xi
,
J.
, and
Mechefske
,
C. K.
,
2006
, “
Modeling of a Fully Flexible 3-PRS Manipulator for Vibration Analysis
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
403
412
.
15.
Zhang
,
J.
,
Li
,
Y.
, and
Huang
,
T.
,
2010
, “
Dynamic Modeling and Eigenvalue Evaluation of a 3-DOF PKM Module
,”
Chin. J. Mech. Eng.
,
23
(
2
), pp.
166
173
.
16.
Zhao
,
Y.
,
Gao
,
F.
,
Dong
,
X.
, and
Zhao
,
X.
,
2011
, “
Dynamics Analysis and Characteristics of the 8-PSS Flexible Redundant Parallel Manipulator
,”
Robot. Comput.-Integr. Manuf.
,
27
(
5
), pp.
918
928
.
17.
Briot
S.
,
Pashkevich
A.
, and
Chablat
D.
,
2011
, “
Reduced Elasto-Dynamic Modelling of Parallel Robots for the Computation of Their Natural Frequencies
,”
Proceedings of the 13th World Congress in Mechanism and Machine Science
,
Guanajuato, México
,
June 19–25
, pp.
1
8
.
18.
Cammarata
,
A.
,
Condorelli
,
D.
, and
Sinatra
,
R.
,
2013
, “
An Algorithm to Study the Elastodynamics of Parallel Kinematic Machines With Lower Kinematic Pairs
,”
ASME J. Mech. Robot.
,
5
(
1
), p.
011004
.
19.
Law
,
M.
,
Ihlenfeldt
,
S.
,
Wabner
,
M.
,
Altintas
,
Y.
, and
Neugebauer
,
R.
,
2013
, “
Position-Dependent Dynamics and Stability of Serial-Parallel Kinematic Machines
,”
CIRP Ann.
,
62
(
1
), pp.
375
378
.
20.
Firoozabadi
,
A. E.
, and
Amirian
,
S. E. G.
,
2015
, “
Dynamic Characteristics of a 3-RPR Planar Parallel Manipulator With Flexible Intermediate Links
,”
Robotica
,
33
(
9
), pp.
1909
1925
.
21.
Zhang
,
J.
,
Zhao
,
Y. Q.
, and
Ceccarelli
,
M.
,
2016
, “
Elastodynamic Model-Based Vibration Characteristics Prediction of a Three Prismatic Revolute Spherical Parallel Kinematic Machine
,”
J. Dyn. Syst.-Trans. ASME
,
138
(
4
), pp.
1
14
.
22.
Zhang
,
J.
,
Zhao
,
Y. Q.
, and
Jin
,
Y.
,
2016
, “
Elastodynamic Modeling and Analysis for an Exechon Parallel Kinematic Machine
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031011
.
23.
Song
,
Y.
,
Dong
,
G.
,
Sun
,
T.
, and
Lian
,
B.
,
2016
, “
Elasto-dynamic Analysis of a Novel 2-DOF Rotational Parallel Mechanism with an Articulated Travelling Platform
,”
Meccanica
,
51
(
7
), pp.
1547
1557
.
24.
Liang
,
D.
,
Song
,
Y.
, and
Sun
,
T.
,
2017
, “
Rigid-Flexible Coupling Dynamic Modeling and Investigation of a Redundantly Actuated Parallel Manipulator With Multiple Actuation Modes
,”
J. Sound Vib.
,
403
, pp.
129
151
.
25.
Wu
,
L.
,
Wang
,
G.
,
Liu
,
H.
, and
Huang
,
T.
,
2018
, “
An Approach for Elastodynamic Modeling of Hybrid Robots Based on Substructure Synthesis Technique
,”
Mech. Mach. Theory
,
123
, pp.
124
136
.
26.
Chen
,
G.
,
Rui
,
X.
, and
Abbas
,
L. K.
,
2018
, “
A Novel Method for the Dynamic Modeling of Stewart Parallel Mechanism
,”
Mech. Mach. Theory
,
126
, pp.
397
412
.
27.
Wittbrodt
,
E.
,
Adamiec-Wójci
,
I.
, and
Wojciech
,
S.
,
2006
,
Dynamics of Flexible Multibody Systems
,
Springer
,
Berlin Heidelberg
.
28.
Venkiteswaran
,
K. V.
, and
Su
,
H. J.
,
2016
, “
A Three-Spring Pseudorigid-Body Model for Soft Joints With Significant Elongation Effects
,”
ASME J. Mech. Robot.
,
8
(
6
), pp.
1
7
.
29.
Zhu
S. K.
,
Yu
Y. Q.
,
2017
, “
Pseudo-Rigid-Body Model for the Flexural Beam With an Inflection Point in Compliant Mechanisms
,”
ASME J. Mech. Robot.
,
9
(
3
), pp.
1
8
.
30.
Zhang
,
J.
,
Dai
,
J. S.
, and
Huang
,
T.
,
2015
, “
Characteristic Equation-Based Dynamic Analysis of a Three Revolute Prismatic Spherical Parallel Kinematic Machine
,”
ASME J. Comput. Nonlin. Dyn.
,
10
(
2
), pp.
1
13
.
31.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2009
, “
Stiffness Analysis of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
5
), pp.
966
982
.
32.
Huang
,
T.
,
Yang
,
S.
,
Wang
,
M.
,
Sun
,
T.
, and
Chetwynd
,
D. G.
,
2015
, “
An Approach to Determining the Unknown Twist/Wrench Subspaces of Lower Mobility Serial Kinematic Chains
,”
ASME J. Mech. Robot.
,
7
(
3
), pp.
1
9
.
33.
Joshi
,
S.
, and
Tsai
,
L. W.
,
2013
, “
A Comparison Study of Two 3-DOF Parallel Manipulators: One With Three and the Other With Four Supporting Legs
,”
IEEE Trans. Robot. Autom.
,
19
(
2
), pp.
200
209
.
34.
Wang
,
Y.
,
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2009
, “
Stiffness Modeling of the Tricept Robot Using the Overall Jacobian Matrix
,”
ASME J. Mech. Robot.
,
1
(
1
), pp.
795
810
.
35.
David
,
H.
,
2004
,
Fundamentals of Finite Element Analysis
,
McGraw-Hill
,
New York
.
36.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), pp.
380
380
.
37.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford
.
38.
T605/6 Five-six Axis Machine
,” http://www.loxin2002.com/t605-6-five-six-axis-machine, accessed December 28, 2018.
39.
Liu
,
H.
,
Huang
,
T.
,
Chetwynd
,
D. G.
, and
Kecskeméthy
,
A.
,
2017
, “
Stiffness Modeling of Parallel Mechanisms at Limb and Joint/link Levels
,”
IEEE Trans. Robot.
,
33
(
3
), pp.
734
741
.
40.
Featherstone
,
R.
,
2008
,
Rigid Body Dynamics Algorithm
,
Springer-Verlag
,
New York
.
41.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice, and Application
,
Research Studies Press
,
Baldok, Hertfordshire, UK
.
This content is only available via PDF.
You do not currently have access to this content.