Rigid foldability is an important requirement when origami is used as the basis to design technical systems that consist of rigid materials. This paper presents a heuristic algorithm that adjusts the location of vertices of nonrigidly foldable but kinematically determinate crease patterns such that they become rigidly foldable. The adjustment is achieved by utilizing constraint violations that occur during the folding process of nonrigidly foldable configurations. The folding process is kinematically simulated through a robust simulator that is based on a bar and hinge principle. The benefits of the algorithm are showcased in different examples, including single-vertex as well as multi-vertex crease patterns.

References

References
1.
Demaine
,
E. D.
, and
Demaine
,
M. L.
,
2002
, “
Recent Results in Computational Origami
,”
Origami3: Third International Meeting of Origami Science, Mathematics and Education
, Asilomar,
California, USA
.
2.
Demaine
,
E. D.
, and
Tachi
,
T.
,
2017
, “
Origamizer: A Practical Algorithm for Folding any Polyhedron
,”
LIPIcs-Leibniz International Proceedings in Informatics
, Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
3.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
Origami4: Fourth International Meeting of Origami Science, Mathematics and Education
,
Pasadena, California, USA
.
4.
Filipov
,
E. T.
,
Liu
,
K.
,
Zachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.
5.
Lang
,
R. J.
,
Nelson
,
T.
,
Magleby
,
S.
, and
Howell
,
L.
,
2017
, “
Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements
,”
ASME J. Mech. Robot.
,
9
(
2
), p.
021013
.
6.
Morgan
,
J.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L.
,
2015
, “
A Preliminary Process for Origami-Adapted Design
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
.
7.
Zimmermann
,
L.
,
Shea
,
K.
, and
Stanković
,
T.
,
2018
, “
Origami Sensitivity – On the Influence of Vertex Geometry
,”
7th International Meeting of Origami Science, Mathematics and Education (7OSME)
,
Oxford, UK
.
8.
He
,
Z.
, and
Guest
,
S. D.
,
2018
, “
On Rigid Origami II: Quadrilateral Creased Papers
,” preprint arXiv:1804.06483.
9.
Tachi
,
T.
,
2010
, “
Freeform Variations of Origami
,” ,
14
(
2
), pp.
203
215
. ISSN 1433-8157.
10.
Huffman
,
D.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C25
(
10
), pp.
1010
1019
.
11.
Miura
,
K.
,
1989
, “A Note on Intrinsic Geometry of Origami,”
Research of Pattern Formation
,
R.
Takaki
, ed.,
KTK Scientific Publishers
,
Tokyo, Japan
, pp.
91
102
.
12.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2015
, “
Single-Degree-of-Freedom Rigidly Foldable Origami Flashers
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
.
13.
Abel
,
Z.
,
Cantarella
,
J.
,
Demaine
,
E. D.
,
Eppstein
,
D.
,
Hull
,
T. C.
,
Ku
,
J. S.
,
Lang
,
R. J.
, and
Tachi
,
T.
,
2016
, “
Rigid Origami Vertices: Conditions and Forcing Sets
,”
J. Comput. Geom.
,
7
(
1
), pp.
171
184
.
14.
Belcastro
,
S.-M.
, and
Hull
,
T. C.
,
2002
, “
A Mathematical Model for Non-Flat Origami
,”
Origami 3: Proceedings of the 3rd International Meeting of Origami Mathematics, Science, and Education
, Asilomar,
California, USA
.
15.
Watanabe
,
N.
, and
Kawaguchi
,
K.
,
2009
, “
The Method for Judging Rigid Foldability
,”
Origami4: Fourth International Meeting of Origami Science, Mathematics and Education
,
Pasadena, California, USA
.
16.
Schief
,
W. K.
,
Bobenko
,
A. I.
, and
Hoffmann
,
T.
,
2008
, “On the Integrability of Infinitesimal and Finite Deformations of Polyhedral Surfaces,”
Discrete Differential Geometry
,
Birkhäuser
,
Basel
, pp.
67
93
.
17.
Cai
,
J.
,
Deng
,
X.
,
Zhang
,
Y.
,
Feng
,
J.
, and
Zhou
,
Y.
,
2016
, “
Folding Behavior of a Foldable Prismatic Mast With Kresling Origami Pattern
,”
ASME J. Mech. Robot.
,
8
(
3
), p.
031004
.
18.
Cai
,
J.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2016
, “
Motion Analysis of a Foldable Barrel Vault Based on Regular and Irregular Yoshimura Origami
,”
ASME J. Mech. Robot.
8
(
2
), p.
021017
.
19.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2015
, “
Rigidly Foldable Origami Twists
,”
Origami
,
6
, pp.
119
130
.
20.
Feng
,
H.
,
Peng
,
R.
,
Ma
,
J.
, and
Chen
,
Y.
,
2018
, “
Rigid Foldability of Generalized Triangle Twist Origami Pattern and Its Derived 6r Linkages
,”
ASME J. Mech. Robot.
,
10
(
5
), p.
051003
.
21.
Liu
,
S.
,
Weilin
,
L.
,
Yan
,
C.
, and
Guoxing
,
L.
,
2016
, “
Deployable Prismatic Structures With Rigid Origami Patterns
,”
ASME J. Mech. Robot.
,
8
(
3
), p.
031002
.
22.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spat. Struct.
,
50
(
3
), pp.
173
179
.
23.
Tachi
,
T.
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium
,
12
(
10
),
Shanghai, China
.
24.
Cai
,
J.
,
Qian
,
Z.
,
Jiang
,
C.
,
Feng
,
J.
, and
Xu
,
Y.
,
2016
, “
Mobility and Kinematic Analysis of Foldable Plate Structures Based on Rigid Origami
,”
ASME J. Mech. Robot.
,
8
(
6
), p.
064502
.
25.
Hull
,
T.
,
2003
, “
Counting Mountain-Valley Assignments for Flat Folds
,”
Ars Combinatoria
,
67
, pp.
175
188
.
26.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
27.
Lang
,
R. J.
, and
Howell
,
L.
,
2018
, “
Rigidly Foldable Quadrilateral Meshes from Angle Arrays
,”
ASME J. Mech. Robot.
,
10
(
2
), p.
021004
.
28.
Diaz
,
A. R.
,
2014
, “
Origami Folding and Bar Frameworks
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
.
This content is only available via PDF.
You do not currently have access to this content.