This paper describes the use of an active disturbance rejection controller (ADRC) to estimate and compensate for the effect of slip in an online manner to improve the path tracking performance of autonomous ground vehicles (AGVs). AGVs with skid-steer locomotion mode are extensively used for robotic applications in the fields of agriculture, transportation, construction, warehouse maintenance, and mining. Majority of these applications such as performing reconnaissance and rescue operations in rough terrain or autonomous package delivery in urban scenarios, require the system to follow a path predetermined by a high-level planner or based on a predefined task. In the absence of effective slip estimation and compensation, the AGVs, especially tracked vehicles, can fail to follow the path as given out by the high-level planner. The proposed ADRC architecture uses a generic mathematical model that can account for the scaling and shift in the states of the system due to the effects of slip through augmented parameters. An extended Kalman filter (EKF) observer is used to estimate the varying slip parameters online. The estimated parameters are then used to compensate for the effects of slip at each iteration by modifying the control actions given by a low-level path tracking controller. The proposed approach is validated through experiments over flat and uneven terrain conditions including asphalt, vinyl flooring, artificial turf, grass, and gravel using a tracked skid-steer mobile robot. A detailed discussion on the results and directions for future research is also presented.

References

1.
Bekker
,
M. G.
,
1962
,
Theory of Land Locomotion: The Mechanics of Vehicle Mobility
,
University of Michigan Press
, Ann Arbor, MI.
2.
Murphy
,
R. R.
,
2014
,
Disaster Robotics
,
MIT Press
, Cambridge, MA.
3.
Nagatani
,
K.
,
Kiribayashi
,
S.
,
Okada
,
Y.
,
Otake
,
K.
,
Yoshida
,
K.
,
Tadokoro
,
S.
,
Nishimura
,
T.
,
Yoshida
,
T.
,
Koyanagi
,
E.
,
Fukushima
,
M.
, and
Kawatsuma
,
S.
,
2013
, “
Emergency Response to the Nuclear Accident at the Fukushima Daiichi Nuclear Power Plants Using Mobile Rescue Robots
,”
J. Feld Rob.
,
30
(
1
), pp.
44
63
.
4.
Murphy
,
R. R.
,
Kravitz
,
J.
,
Stover
,
S. L.
, and
Shoureshi
,
R.
,
2009
, “
Mobile Robots in Mine Rescue and Recovery
,”
IEEE Robot. Autom. Mag.
,
16
(
2
), pp.
91
103
.
5.
Murphy
,
R. R.
,
Tadokoro
,
S.
,
Nardi
,
D.
,
Jacoff
,
A.
,
Fiorini
,
P.
,
Choset
,
H.
, and
Erkmen
,
A. M.
,
2008
, “
Search and Rescue Robotics
,”
Springer Handbook of Robotics
,
Springer
, Berlin, pp.
1151
1173
.
6.
Rodríguez
,
F.
,
2014
,
Autonomous Tracked Robots in Planar Off-Road Conditions
,
Springer International Publishing
, Berlin.
7.
Siegwart
,
R.
,
2004
,
Introduction to Autonomous Mobile Robots
,
MIT Press
, Cambridge, MA.
8.
Corke
,
P.
,
2011
,
Robotics, Vision and Control
,
Springer International Publishing
, Berlin.
9.
Kumar
,
P.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2017
, “
Design of a Multi-Directional Hybrid-Locomotion Modular Robot With Feedforward Stability Control
,”
ASME
Paper No. DETC2017-67436.
10.
Gonzalez
,
R.
, and
Iagnemma
,
K.
,
2018
, “
Slippage Estimation and Compensation for Planetary Exploration Rovers. State of the Art and Future Challenges
,”
J. Field Rob.
,
35
(
4
), pp.
564
577
.
11.
Burke
,
M.
,
2012
, “
Path-Following Control of a Velocity Constrained Tracked Vehicle Incorporating Adaptive Slip Estimation
,”
IEEE
International Conference on Robotics and Automation, Saint Paul, MN, May 14–18, pp.
97
102
.
12.
Ding
,
L.
,
Gao
,
H.
,
Deng
,
Z.
, and
Liu
,
Z.
,
2010
, “
Slip-Ratio-Coordinated Control of Planetary Exploration Robots Traversing Over Deformable Rough Terrain
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Taipei, Taiwan, Oct. 18–22, pp.
4958
4963
.
13.
Kim
,
J.
, and
Lee
,
J.
,
2016
, “
A Kinematic-Based Rough Terrain Control for Traction and Energy Saving of an Exploration Rover
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS
), Daejeon, South Korea, Oct. 9–14, pp.
3595
3600
.
14.
Terry
,
J. D.
, and
Minor
,
M. A.
,
2008
, “
Traction Estimation and Control for Mobile Robots Using the Wheel Slip Velocity
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Nice, France, Sept. 22–26, pp.
2003
2009
.
15.
Ward
,
C. C.
, and
Iagnemma
,
K.
,
2008
, “
A Dynamic-Model-Based Wheel Slip Detector for Mobile Robots on Outdoor Terrain
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
821
831
.
16.
Howard
,
T. M.
, and
Kelly
,
A.
,
2007
, “
Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
,”
Int. J. Rob. Res.
,
26
(
2
), pp.
141
166
.
17.
Naveed
,
K.
,
Khan
,
Z. H.
, and
Hussain
,
A.
,
2014
, “
Adaptive Trajectory Tracking of Wheeled Mobile Robot With Uncertain Parameters
,”
Computational Intelligence for Decision Support in Cyber-Physical Systems
(Studies in Computational Intelligence),
Springer
,
Singapore
, pp.
237
262
.
18.
Taheri-Kalani
,
J.
, and
Khosrowjerdi
,
M. J.
,
2014
, “
Adaptive Trajectory Tracking Control of Wheeled Mobile Robots With Disturbance Observer
,”
Int. J. Adapt. Control Signal Process.
,
28
(
1
), pp.
14
27
.
19.
Sebastian
,
B.
, and
Ben-Tzvi
,
P.
,
2018
, “
Physics Based Path Planning for Autonomous Tracked Vehicle in Challenging Terrain
,”
J. Intell. Rob. Syst.
(epub).
20.
Auersch
,
L.
,
1998
, “
Vehicle-Track-Interaction and Soil Dynamics
,”
Veh. Syst. Dyn.
,
29
(
Suppl. 1
), pp.
553
558
.
21.
Yu
,
W.
,
Chuy
,
O. Y.
,
Collins
,
E. G.
, and
Hollis
,
P.
,
2010
, “
Analysis and Experimental Verification for Dynamic Modeling of a Skid-Steered Wheeled Vehicle
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
340
353
.
22.
Seegmiller
,
N.
,
Rogers-Marcovitz
,
F.
,
Miller
,
G.
, and
Kelly
,
A.
,
2011
, “
A Unified Perturbative Dynamics Approach to Online Vehicle Model Identification
,”
International Symposium on Robotics Research
, Flagstaff, AZ, Dec. 9–12, pp.
1
16
.
23.
Fink
,
J. R.
, and
Stump
,
E. A.
,
2014
, “
Experimental Analysis of Models for Trajectory Generation on Tracked Vehicles
,”
IEEE
International Conference on Intelligent Robots and Systems
, Chicago, IL, Sept. 14–18, pp.
1970
1977
.
24.
Rajagopalan
,
V.
,
Mericli
,
C.
, and
Kelly
,
A.
,
2016
, “
Slip-Aware Model Predictive Optimal Control for Path Following
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
4585
4590
.
25.
Martínez
,
J. L.
,
Mandow
,
A.
,
Morales
,
J.
,
Pedraza
,
S.
, and
García-Cerezo
,
A.
,
2005
, “
Approximating Kinematics for Tracked Mobile Robots
,”
Int. J. Rob. Res.
,
24
(
10
), pp.
867
878
.
26.
Mandow
,
A.
,
Martínez
,
J. L.
,
Morales
,
J.
,
Blanco
,
J. L.
,
García-Cerezo
,
A.
, and
González
,
J.
,
2007
, “
Experimental Kinematics for Wheeled Skid-Steer Mobile Robots
,”
IEEE
International Conference on Intelligent Robots and Systems
, San Diego, CA, Oct. 29–Nov. 2, pp.
1222
1227
.
27.
Pentzer
,
J.
,
Brennan
,
S.
, and
Reichard
,
K.
,
2014
, “
Model-Based Prediction of Skid-Steer Robot Kinematics Using Online Estimation of Track Instantaneous Centers of Rotation
,”
J. Field Rob.
,
31
(
3
), pp.
455
476
.
28.
Pentzer
,
J.
,
Brennan
,
S.
, and
Reichard
,
K.
,
2014
, “
The Use of Unicycle Robot Control Strategies for Skid-Steer Robots Through the ICR Kinematic Mapping
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Chicago, IL, Sept. 14–18, pp.
3201
3206
.
29.
Helmick
,
D. M.
,
Roumeliotis
,
S. I.
,
Cheng
,
Y.
,
Clouse
,
D. S.
,
Bajracharya
,
M.
, and
Matthies
,
L. H.
,
2006
, “
Slip-Compensated Path Following for Planetary Exploration Rovers
,”
Adv. Robot.
,
20
(
11
), pp.
1257
1280
.
30.
Canfield
,
S. L.
,
Hill
,
T. W.
, and
Zuccaro
,
S. G.
,
2018
, “
Prediction and Experimental Validation of Power Consumption of Skid-Steer Mobile Robots in Manufacturing Environments
,”
J. Intell. Rob. Syst. Theory Appl.
(epub).
31.
Canfield
,
S. L.
,
Hill
,
T. W.
, and
Zuccaro
,
S. G.
,
2016
, “
Modeling Power Requirements for Skid-Steer Mobile Robots in Manufacturing Environments
,”
ASME
Paper No. DETC2016-60152.
32.
Gupta
,
N.
,
Ordonez
,
C.
, and
Collins
,
E. G.
,
2017
, “
Dynamically Feasible, Energy Efficient Motion Planning for Skid-Steered Vehicles
,”
Auton. Robots
,
41
(
2
), pp.
453
471
.
33.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.
34.
Herbst
,
G.
,
2013
, “
A Simulative Study on Active Disturbance Rejection Control (ADRC) as a Control Tool for Practitioners
,”
Electronics
,
2
(
4
), pp.
246
279
.
35.
Seegmiller
,
N.
,
Rogers-Marcovitz
,
F.
,
Miller
,
G.
, and
Kelly
,
A.
,
2013
, “
Vehicle Model Identification by Integrated Prediction Error Minimization
,”
Int. J. Rob. Res.
,
32
(
8
), pp.
912
931
.
36.
Sebastian
,
B.
, and
Williams
,
A.
,
2018
, “
Gaussian Kernel Controller for Path Tracking in Mobile Robots
,”
ASME
Paper No. DETC2018-85641.
37.
Park
,
J. J.
, and
Kuipers
,
B.
,
2011
, “
A Smooth Control Law for Graceful Motion of Differential Wheeled Mobile Robots in 2D Environment
,”
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
4896
4902
.
38.
Wit
,
J.
,
Crane
,
C. D.
, and
Armstrong
,
D.
,
2004
, “
Autonomous Ground Vehicle Path Tracking
,”
J. Rob. Syst.
,
21
(
8
), pp.
439
449
.
39.
Coulter
,
R. C.
,
1992
, “
Implementation of the Pure Pursuit Path Tracking Algorithm
,” Robotics Institute, Carnegie Mellon University, Technical Report No.
CMU-RI-TR-92-01
.https://www.ri.cmu.edu/publications/implementation-of-the-pure-pursuit-path-tracking-algorithm/
40.
Open Source Robotics Foundation
, 2014, “
Indigo—ROS Wiki
,” Open Source Robotics Foundation, Mountain View, CA, accessed July 7, 2018, http://wiki.ros.org/indigo
41.
Pozyx Labs
,
2015
, “
Pozyx Accurate Positioning
,” Pozyx Labs, Ghent, Belgium, accessed June 25, 2018, https://www.pozyx.io/
42.
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2016
, “
Spatial Object Tracking System Based on Linear Optical Sensor Arrays
,”
IEEE Sens. J.
,
16
(
22
), pp.
7933
7940
.
43.
Ben-Tzvi
,
P.
,
Goldenberg
,
A. A.
, and
Zu
,
J. W.
,
2010
, “
Articulated Hybrid Mobile Robot Mechanism With Compounded Mobility and Manipulation and On-Board Wireless Sensor/Actuator Control Interfaces
,”
Mechatronics
,
20
(
6
), pp.
627
639
.
44.
Paliwal
,
K.
,
Agarwal
,
A.
, and
Sinha
,
S.
,
1982
, “
A Modification Over Sakoe and Chiba's Dynamic Time Warping Algorithm for Isolated Word Recognition
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
(
ICASSP '82
), Paris, France, May 3–5, pp.
1259
1261
.
You do not currently have access to this content.