A novel parallel kinematics machine (PKM) stemming from the 3-SRU (spherical-revolute-universal) under-actuated joints topology is presented in this paper. The concept here proposed takes advantage of a reconfigurable universal joint obtained by locking, one at a time, different rotations of a spherical pair. Such local reconfiguration causes a slight, yet crucial, modification of the robot legs mobility which is enough to provide the end-effector with different kinds of motion. In particular, the kinematic chain is converted to two different 3-URU architectures (universal-spherical-universal) able to provide the moving platform with essentially different mobilities. The paper is dedicated at formally demonstrating the motion capabilities offered by such parallel architectures. To this aim, the first part of the paper describes the mechanical structures and formalizes the kinematic problem through appropriate sets of polynomial equations. Then, an analysis of the equations is proposed to uniquely identify the mobilities of the moving platform. At last, a concept design is proposed for the reconfigurable spherical platform.

References

1.
Gogu
,
G.
,
2009
, “
Branching Singularities in Kinematotropic Parallel Mechanisms
,”
Computational Kinematics
,
Springer
, Springer, Berlin, pp.
341
348
.
2.
Zeng
,
Q.
,
Fang
,
Y.
, and
Ehmann
,
K. F.
,
2011
, “
Design of a Novel 4-DOF Kinematotropic Hybrid Parallel Manipulator
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121006
.
3.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,”
Recent Advances in Robot Kinematics
,
Springer
, Berlin, pp.
359
368
.
4.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
6
), pp.
743
761
.
5.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2014
, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain
,”
Mech. Mach. Theory
,
74
, pp.
1
9
.
6.
Zeng
,
Q.
, and
Ehmann
,
K. F.
,
2014
, “
Design of Parallel Hybrid-Loop Manipulators With Kinematotropic Property and Deployability
,”
Mech. Mach. Theory
,
71
, pp.
1
26
.
7.
Huang
,
H.
, and
Li
,
B.
,
2009
, “
Development of Motion Type Reconfigurable Modular Robot for Multi-Task Application
,” IEEE International Conference on Information and Automation (
ICIA
), Macau, China, June 22–24, pp.
1386
1391
.
8.
Liu
,
G.
,
Liu
,
Y.
, and
Goldenberg
,
A. A.
,
2011
, “
Design, Analysis, and Control of a Spring-Assisted Modular and Reconfigurable Robot
,”
IEEE/ASME Trans. Mechatronics
,
16
(
4
), pp.
695
706
.
9.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory
,
74
, pp.
188
201
.
10.
Nurahmi
,
L.
,
Caro
,
S.
,
Wenger
,
P.
,
Schadlbauer
,
J.
, and
Husty
,
M.
,
2016
, “
Reconfiguration Analysis of a 4-RUU Parallel Manipulator
,”
Mech. Mach. Theory
,
96
, pp.
269
289
.
11.
Nayak
,
A.
,
Stigger
,
T.
,
Husty
,
M. L.
,
Wenger
,
P.
, and
Caro
,
S.
,
2018
, “
Operation Mode Analysis of 3-RPS Parallel Manipulators Based on Their Design Parameters
,”
Comput. Aided Geom. Des.
,
63
, pp.
122
134
.
12.
Gan
,
D.
, and
Dai
,
J. S.
,
2013
, “
Geometry Constraint and Branch Motion Evolution of 3-PUP Parallel Mechanisms With Bifurcated Motion
,”
Mech. Mach. Theory
,
61
, pp.
168
183
.
13.
Ye
,
W.
,
Fang
,
Y.
, and
Guo
,
S.
,
2014
, “
Reconfigurable Parallel Mechanisms With Planar Five-Bar Metamorphic Linkages
,”
Sci. China Technol. Sci.
,
57
(
1
), pp.
210
218
.
14.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2013
, “
Reconfigurability and Unified Kinematics Modeling of a 3RTPS Metamorphic Parallel Mechanism With Perpendicular Constraint Screws
,”
Rob. Comput.-Integr. Manuf.
,
29
(
4
), pp.
121
128
.
15.
Khalid
,
A.
, and
Mekid
,
S.
,
2010
, “
Design Synthesis of a Three Legged SPS Parallel Manipulator
,”
36th International MATADOR Conference
, University of Manchester, July, pp.
169
173
.
16.
Ye
,
W.
,
Fang
,
Y.
, and
Guo
,
S.
,
2012
, “
Structural Synthesis of a Class of Metamorphic Parallel Mechanisms With Variable Mobility
,”
Advances in Reconfigurable Mechanisms and Robots I
,
Springer
, Berlin, pp.
119
126
.
17.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
18.
Dai
,
J. S.
,
Zoppi
,
M.
, and
Kong
,
X.
,
2012
,
Advances in Reconfigurable Mechanisms and Robots I
,
Springer
, Berlin.
19.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2013
, “
Geometric Constraint and Mobility Variation of Two 3SV PSV Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.
20.
Carbonari
,
L.
, and
Callegari
,
M.
,
2012
, “
The Kinematotropic 3-CPU Parallel Robot: Analysis of Mobility and Reconfigurability Aspects
,”
Latest Advances in Robot Kinematics
,
Springer
, Berlin, pp.
373
380
.
21.
Palpacelli
,
M.
,
Carbonari
,
L.
, and
Palmieri
,
G.
,
2014
, “
A Lockable Spherical Joint for Robotic Applications
,” IEEE/ASME Tenth International Conference on Mechatronic and Embedded Systems and Applications (
MESA
), Senigallia, Italy, Sept. 10–12, pp.
1
6
.
22.
Palpacelli
,
M.-C.
,
Carbonari
,
L.
, and
Palmieri
,
G.
,
2016
, “
Details on the Design of a Lockable Spherical Joint for Robotic Applications
,”
J. Intell. Rob. Syst.: Theory Appl.
,
81
(
2
), pp.
169
179
.
23.
Palpacelli
,
M.
,
Carbonari
,
L.
,
Palmieri
,
G.
, and
Callegari
,
M.
,
2016
, “
Mobility Analysis of Non-Overconstrained Reconfigurable Parallel Manipulators With 3-CPU/3-CRU Kinematics
,”
Advances in Reconfigurable Mechanisms and Robots II
,
Springer
, Cham, Switzerland, pp.
189
200
.
24.
Cox
,
D. A.
,
Little
,
J.
, and
O'shea
,
D.
,
2006
,
Using Algebraic Geometry
, Vol.
185
,
Springer, Berlin
.
25.
Walter
,
D. R.
,
Husty
,
M. L.
, and
Pfurner
,
M.
,
2009
, “
A Complete Kinematic Analysis of the SNU 3-UPU Parallel Robot
,”
Contemp. Math.
,
496
, p.
331
.
26.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
27.
Walter
,
D. R.
,
Husty
,
M. L.
, and
Pfurner
,
M.
,
2008
, “
A Complete Kinematic Analysis of the SNU 3-UPU Parallel Robot
,”
Interactions of Classical and Numerical Algebraic Geometry
,
D. J.
Bates
,
G.
Besana
,
S.
DiRocco
, and
C. W.
Wampler
, eds., Vol.
496
,
American Mathematical Society
, Providence, RI, pp.
331
344
.
28.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M.-C.
,
2014
, “
Analysis of Kinematics and Reconfigurability of a Spherical Parallel Manipulator
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1541
1547
.
29.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M.-C.
,
2014
, “
A New Class of Reconfigurable Parallel Kinematic Machines
,”
Mech. Mach. Theory
,
79
(
Suppl C
), pp.
173
183
.
30.
Decker
,
W.
,
Greuel
,
G.-M.
,
Pfister
,
G.
, and
Schönemann
,
H.
,
2016
, “
Singular 4-1-0—A Computer Algebra System for Polynomial Computations
,” accessed Dec. 31, 2018, http://www.singular.uni-kl.de
31.
Gianni
,
P.
,
Trager
,
B.
, and
Zacharias
,
G.
,
1988
, “
Gröbner Bases and Primary Decomposition of Polynomial Ideals
,”
J. Symbolic Comput.
,
6
(
2–3
), pp.
149
167
.
32.
Shimoyama
,
T.
, and
Yokoyama
,
K.
,
1996
, “
Localization and Primary Decomposition of Polynomial Ideals
,”
J. Symbolic Comput.
,
22
(
3
), pp.
247
277
.
33.
Palpacelli
,
M.
,
Carbonari
,
L.
,
Palmieri
,
G.
, and
Callegari
,
M.
,
2018
, “
Design of a Lockable Spherical Joint for a Reconfigurable 3-URU Parallel Platform
,”
Robotics
,
7
(
3
), p.
42
.
You do not currently have access to this content.