The use of cable-driven parallel robots (CDPR) in real-world applications makes safety a major concern for these devices and a relevant research topic. Cable-suspended camera systems are among the earliest and most common applications of CDPRs. In this paper, we propose a novel after-failure approach for cable-suspended camera systems. This strategy, which is applied after a cable breaks, seeks to drive the end effector, i.e., the camera, toward a safe pose, following an oscillatory trajectory that guarantees positive and bounded tensions in the remaining cables. The safe landing location is optimized to minimize the trajectory time while avoiding collisions with the physical boundaries of the workspace. Results of numerical simulations indicate the feasibility of the proposed approach.

References

1.
Albus
,
J.
,
Bostelman
,
R.
, and
Dagalakis
,
N.
,
1993
, “
The NIST Robocrane
,”
J. Field Rob.
,
10
(
5
), pp.
709
724
.
2.
Cone
,
L. L.
,
1985
, “
Skycam—An Aerial Robotic Camera System
,”
Byte
,
10
(
10
), p.
122
.https://archive.org/stream/byte-magazine-1985-10/1985_10_BYTE_10-10_Simulating_Society#page/n121/mode/2up
3.
Abdolshah
,
S.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S.
,
2017
, “
Performance Evaluation of a New Design of Cable-Suspended Camera System
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29–June 3, pp.
3728
3733
.
4.
Roberts
,
R. G.
,
Graham
,
T.
, and
Lippitt
,
T.
,
1998
, “
On the Inverse Kinematics, Statics, and Fault Tolerance of Cable-Suspended Robots
,”
J. Field Rob.
,
15
(
10
), pp.
581
597
.
5.
Bosscher
,
P.
, and
Ebert-Uphoff
,
I.
,
2004
, “
Wrench-Based Analysis of Cable-Driven Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), New Orleans, LA, Apr. 26–May 1, pp.
4950
4955
.
6.
Notash
,
L.
,
2012
, “
Failure Recovery for Wrench Capability of Wire-Actuated Parallel Manipulators
,”
Robotica
,
30
(
6
), pp.
941
950
.
7.
Notash
,
L.
,
2013
, “
Wrench Recovery for Wire-Actuated Parallel Manipulators
,”
Robot Design, Dynamics Control (Romansy 19)
, Paris, France, June 12–14, pp.
201
208
.
8.
Moradi
,
A.
, and
Notash
,
L.
,
2011
, “
Retrieving Lost Stiffness of Planar Wire-Actuated Parallel Manipulators After Failure
,”
13th World Congress in Mechanism and Machine Science
, Guanajuato, Mexico, June 19–23, pp. 686–706.
9.
Ghaffar
,
A.
, and
Hassan
,
M.
,
2014
, “
Failure Analysis of Cable Based Parallel Manipulators
,”
Appl. Mech. Mater.
,
736
, pp. 203–210.
10.
Bruckmann
,
T.
,
Mikelsons
,
L.
,
Brandt
,
T.
,
Hiller
,
M.
, and
Schramm
,
D.
,
2008
, “
Wire Robots—Part II: Dynamics, Control & Application
,”
Parallel Manipulators, New Developments
,
InTech
, London.
11.
Boschetti
,
G.
,
Passarini
,
C.
, and
Trevisani
,
A.
,
2017
, “
A Recovery Strategy for Cable Driven Robots in Case of Cable Failure
,”
Int. J. Mech. Control
,
18
, pp.
41
48
.
12.
Boschetti
,
G.
, and
Trevisani
,
A.
,
2018
, “
Cable Robot Performance Evaluation by Wrench Exertion Capability
,”
Robotics
,
7
(
2
), p.
15
.
13.
Rosati
,
G.
,
Zanotto
,
D.
, and
Agrawal
,
S. K.
,
2011
, “
On the Design of Adaptive Cable-Driven Systems
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021004
.
14.
Zanotto
,
D.
,
Rosati
,
G.
,
Minto
,
S.
, and
Rossi
,
A.
,
2014
, “
Sophia-3: A Semiadaptive Cable-Driven Rehabilitation Device With a Tilting Working Plane
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
974
979
.
15.
Trevisani
,
A.
,
2010
, “
Underconstrained Planar Cable-Direct-Driven Robots: A Trajectory Planning Method Ensuring Positive and Bounded Cable Tensions
,”
Mechatronics
,
20
(
1
), pp.
113
127
.
16.
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2011
, “
Modeling and Control of a 3-DOF Pendulum-Like Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
3964
3969
.
17.
Barbazza
,
L.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2017
, “
Design and Optimal Control of an Underactuated Cable-Driven Micro–Macro Robot
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
896
903
.
18.
Gosselin
,
C.
,
Ren
,
P.
, and
Foucault
,
S.
,
2012
, “
Dynamic Trajectory Planning of a Two-DOF Cable-Suspended Parallel Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), St Paul, MN, May 14–19, pp.
1476
1481
.
19.
Gosselin
,
C.
,
2013
, “
Global Planning of Dynamically Feasible Trajectories for Three-DOF Spatial Cable-Suspended Parallel Robots
,”
Cable-Driven Parallel Robots
,
Springer
, Berlin, pp.
3
22
.
20.
Gosselin
,
C.
, and
Foucault
,
S.
,
2014
, “
Dynamic Point-to-Point Trajectory Planning of a Two-DOF Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
728
736
.
21.
Jiang
,
X.
, and
Gosselin
,
C.
,
2014
, “
Dynamically Feasible Trajectories for Three-DOF Planar Cable-Suspended Parallel Robots
,”
ASME
Paper No. DETC2014-34419.
22.
Jiang
,
X.
, and
Gosselin
,
C.
,
2016
, “
Dynamic Point-to-Point Trajectory Planning of a Three-DOF Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1550
1557
.
23.
Jiang
,
X.
,
Barnett
,
E.
, and
Gosselin
,
C.
,
2018
, “
Periodic Trajectory Planning Beyond the Static Workspace for 6-DOF Cable-Suspended Parallel Robots
,”
IEEE Trans. Rob.
,
43
(
4
), pp.
1128
1140
.
24.
Zhang
,
N.
,
Shang
,
W. W.
, and
Cong
,
S.
,
2017
, “
Geometry-Based Trajectory Planning of a 3-3 Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
484
491
.
25.
Zhang
,
N.
,
Shang
,
W.
, and
Cong
,
S.
,
2018
, “
Dynamic Trajectory Planning for a Spatial 3-DOF Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
122
, pp.
177
196
.
26.
Dion-Gauvin
,
P.
, and
Gosselin
,
C.
,
2017
, “
Trajectory Planning for the Static to Dynamic Transition of Point-Mass Cable-Suspended Parallel Mechanisms
,”
Mech. Mach. Theory
,
113
, pp.
158
178
.
27.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2018
, “
Dynamically-Feasible Elliptical Trajectories for Fully Constrained 3-DOF Cable-Suspended Parallel Robots
,”
Cable-Driven Parallel Robots
,
Springer
, Cham, Switzerland, pp.
219
230
.
28.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2018
, “
Dynamically Feasible Periodic Trajectories for Generic Spatial Three-Degree-of-Freedom Cable-Suspended Parallel Robots
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031004
.
29.
Berti
,
A.
,
Gouttefarde
,
M.
, and
Carricato
,
M.
,
2018
, “
Dynamic Recovery of Cable-Suspended Parallel Robots After a Cable Failure
,”
Advances in Robot Kinematics 2016
,
Springer
, Cham, Switzerland, pp.
331
339
.
You do not currently have access to this content.