The extended Jacobian is a technique for solving the redundancy of redundant robots. It is based on the definition of secondary tasks, through constraint functions that are added to the mapping between joint rates and end-effector's twist. Several approaches showed its potential, applications, and limitations. In general, the constraint functions are a linear combination of basic functions with constant coefficients. This paper proposes the use of adaptive coefficients in such functions by using the conditioning index of the extended Jacobian as a quality measure. A good conditioning index of the extended Jacobian keeps the robot far from singularities and contributes to the solution of the inverse kinematics. In this paper, initially, the extended Jacobian and the proposed algorithm are discussed, and then, two tests in different circumstances are presented in order to validate the proposal.

References

References
1.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2009
,
Robotics: Modelling, Planning and Control
,
Springer
,
London
.
2.
Martin
,
D. P.
,
Baillieul
,
J.
, and
Hollerbach
,
J. M.
,
1989
, “
Resolution of Kinematic Redundancy Using Optimization Techniques
,”
IEEE Trans. Rob. Autom.
,
5
(
4
), pp.
529
533
.
3.
Siciliano
,
B.
, and
Kathib
,
O.
,
2016
,
Springer Handbook of Robotics
,
Springer
,
Berlin
.
4.
Wampler
,
C.
,
1987
, “
Inverse Kinematic Functions for Redundant Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Raleigh, NC, Mar. 31–Apr. 3, pp.
610
617
.
5.
Chembuly
,
V. V. M. J. S.
, and
Voruganti
,
H. K.
,
2018
, “
An Efficient Approach for Inverse Kinematics and Redundancy Resolution Scheme of Hyper-Redundant Manipulators
,”
AIP Conf. Proc.
,
1943
(1), p.
020019
.
6.
Yahya
,
S.
,
Moghavvemi
,
M.
, and
Mohamed
,
H. A. F.
,
2011
, “
Geometrical Approach of Planar Hyper-Redundant Manipulators: Inverse Kinematics, Path Planning and Workspace
,”
Simul. Modell. Pract. Theory
,
19
(
1
), pp.
406
422
.
7.
Santos
,
C. H. F.
,
Guenther
,
R.
,
Martins
,
D.
, and
De-Pieri
,
E. R.
,
2006
, “
Virtual Kinematic Chains to Solve the Underwater Vehicle-Manipulator Systems Redundancy
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
3
), pp.
354
361
.
8.
Klein
,
C. A.
,
Chu-Jenq
,
C.
, and
Ahmed
,
S.
,
1995
, “
A New Formulation of the Extended Jacobian Method and Its Use in Mapping Algorithmic Singularities for Kinematically Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
,
11
(
1
), pp.
50
55
.
9.
Siciliano
,
B.
,
1990
, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Intell. Rob. Syst.
,
3
(
3
), pp.
201
212
.
10.
Chiaverini
,
S.
,
1997
, “
Singularity-Robust Task-Priority Redundancy Resolution for Real-Time Kinematic Control of Robot Manipulators
,”
IEEE Trans. Rob. Autom.
,
13
(
3
), pp.
398
410
.
11.
Campos Bonilla
,
A. A.
,
Guenther
,
R.
, and
Martins
,
D.
,
2009
, “
Differential Kinematics of Parallel Manipulators Using Assur Virtual Chains
,”
Proc. Int. Mech. Eng. Part C
,
223
(
7
), pp.
1697
1711
.
12.
Simas
,
H.
,
Guenther
,
R.
,
Da-Cruz
,
D.
, and
Martins
,
D.
,
2009
, “
A New Method to Solve Robot Inverse Kinematics Using Assur Virtual Chains
,”
Robotica
,
27
(
07
), pp.
1017
1026
.
13.
Ratajczak
,
J.
,
2015
, “
Design of Inverse Kinematics Algorithms: Extended Jacobian Approximation of the Dynamically Consistent Jacobian Inverse
,”
Arch. Control Sci.
,
25
(
1
), pp.
35
50
.
14.
Baillieul
,
J.
,
1985
, “
Kinematic Programming Alternatives for Redundant Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), St. Louis, MO, Mar. 25–28, pp.
722
728.
15.
Šoch
,
M.
, and
Lórencz
,
R.
,
2005
, “
Solving Inverse Kinematics—A New Approach to the Extended Jacobian Technique
,”
Acta Polytechnica: J. Adv. Eng.
,
45
(
2
), pp.
21
26
.https://ojs.cvut.cz/ojs/index.php/ap/article/download/680/512
16.
Marcos
,
M. G.
,
Tenreiro Machado
,
J. A.
, and
Azevedo-Perdicoúlis
,
T.-P.
,
2009
, “
Trajectory Planning of Redundant Manipulators Using Genetic Algorithms
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
7
), pp.
2858
2869
.
17.
Klein
,
C.
,
Chu-Jenq
,
C.
, and
Ahmed
,
S.
,
1993
, “
Use of an Extended Jacobian Method to Map Algorithmic Singularities
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Atlanta, GA, May 2–6, pp.
632
637
.
18.
Angeles
,
J.
,
1992
, “
The Design of Isotropic Manipulator Architectures in the Presence of Redundancies
,”
Int. J. Rob. Res.
,
11
(
3
), pp.
196
201
.
19.
Kumar
,
V.
,
Sen
,
S.
,
Roy
,
S. S.
,
Das
,
S. K.
, and
Shome
,
S. N.
,
2015
, “
Inverse Kinematics of Redundant Manipulator Using Interval Newton Method
,”
Int. J. Eng. Manuf.
,
5
(
2
), pp.
19
29
.
20.
Toshani
,
H.
, and
Farrokhi
,
M.
,
2014
, “
Real-Time Inverse Kinematics of Redundant Manipulators Using Neural Networks and Quadratic Programming: A Lyapunov-Based Approach
,”
Rob. Auton. Syst.
,
62
(
6
), pp.
766
781
.
21.
Marani
,
G.
,
Kim
,
J.
,
Yuh
,
J.
, and
Chung
,
W. K.
,
2002
, “
A Real-Time Approach for Singularity Avoidance in Resolved Motion Rate Control of Robotic Manipulators
,”
IEEE
International Conference on Robotics and Automation
, Washington, DC, May 11–15, pp.
1973
1978
.
22.
O'Neil
,
K. A.
,
Chen
,
Y.
, and
Seng
,
J.
,
1997
, “
Removing Singularities of Resolved Motion Rate Control of Mechanisms, Including Self-Motion
,”
IEEE Trans. Rob. Autom.
,
13
(
5
), pp.
741
751
.
23.
Ananthanarayanan
,
H.
, and
Ordóñez
,
R.
,
2015
, “
Real-Time Inverse Kinematics of (2n+1)DOF Hyper-Redundant Manipulator Arm Via a Combined Numerical and Analytical Approach
,”
Mech. Mach. Theory
,
91
, pp.
209
226
.
24.
Wei
,
Y.
,
Jian
,
S.
,
He
,
S.
, and
Wang
,
Z.
,
2014
, “
General Approach for Inverse Kinematics of nR Robots
,”
Mech. Mach. Theory
,
75
, pp.
97
106
.
25.
Blanchini
,
F.
,
Fenu
,
G.
,
Giordano
,
G.
, and
Pellegrino
,
A.
,
2017
, “
A Convex Programming Approach to the Inverse Kinematics Problem for Manipulators Under Constraints
,”
Eur. J. Control
,
33
, pp.
11
23
.
26.
Huo
,
L.
, and
Baron
,
L.
,
2011
, “
The Self-Adaptation of Weights for Joint-Limits and Singularity Avoidances of Functionally Redundant Robotic-Task
,”
Rob. Comput. Integr. Manuf.
,
27
(
2
), pp.
367
376
.
27.
Huo
,
L.
, and
Baron
,
L.
,
2007
, “
Inverse Kinematics of Functionally-Redundant Serial Manipulators Under Joint Limits and Singularity Avoidance
,”
First International Conference on Systems and Control
, Marrakesh, Morocco, May 16–18, pp.
1
7
.https://www.researchgate.net/publication/259578625_Inverse_Kinematics_of_Functionally-Redundant_Serial_Manipulators_under_Joint_Limits_and_Singularity_Avoidance
28.
Angeles
,
J.
,
Ranjbaran
,
F.
, and
Patel
,
R. V.
,
1992
, “
On the Design of the Kinematic Structure of Seven-Axes Redundant Manipulators for Maximum Conditioning
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Nice, France, May 12–14, pp.
494
499
.
29.
Kumar
,
S.
,
Sukanavam
,
S.
, and
Balasubramanian
,
R.
,
2010
, “
An Optimization Approach to Solve the Inverse Kinematics of Redundant Manipulator
,”
Int. J. Inf. Syst. Sci.
,
6
(
4
), pp.
414
423
.https://pdfs.semanticscholar.org/a156/12ab149f5755a7606369956067f19e4d6dbc.pdf
30.
Chang
,
P.
,
1986
, “
A Closed-Form Solution for the Control of Manipulators With Kinematic Redundancy
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 7–10, pp.
9
14
.
31.
Tevatia
,
G.
, and
Schaal
,
S.
,
2000
, “
Inverse Kinematics for Humanoid Robots
,”
Millennium Conference, IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 24–28, pp.
294
299
.
32.
Tchoń
,
K.
, and
Jakubiak
,
J.
,
2003
, “
Extended Jacobian Motion Planning Algorithm for Mobile Manipulators
,”
Seventh IFAC Symposium on Robot Control (SYROCO)
, Wroclaw, Poland, Sept. 1–3, pp.
147
152
.
33.
Marani
,
G.
,
Kim
,
J.
,
Yuh
,
J.
, and
Chung
,
W. K.
,
2003
, “
Algorithmic Singularities Avoidance in Task-Priority Based Controller for Redundant Manipulators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Las Vegas, NV, Oct. 27–31, pp.
3570
3574.
34.
Simas
,
H.
,
Dias
,
A.
, and
Martins
,
D.
,
2012
, “
Extended Jacobian for Redundant Robots Obtained From the Kinematics Constraints
,”
ABCM Symposium Series in Mechatronics
(Section II - Robotics, Vol. 5), ABCM, Rio de Janeiro, Brazil, pp.
1005
1014
.
35.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
36.
Zaplana
,
I.
, and
Basanez
,
L.
,
2018
, “
A Novel Closed-Form Solution for the Inverse Kinematics of Redundant Manipulators Through Workspace Analysis
,”
Mech. Mach. Theory
,
121
, pp.
829
843
.
37.
Bertram
,
D.
,
Kuffner
,
J.
,
Dillmann
,
R.
, and
Asfour
,
T.
,
2006
, “
An Integrated Approach to Inverse Kinematics and Path Planning for Redundant Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Orlando, FL, May 15–19, pp.
1874
1879
.
38.
Klein
,
C. A.
, and
Blaho
,
B. E.
,
1987
, “
Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators
,”
Int. J. Rob. Res.
,
6
(
2
), pp.
72
83
.
39.
Faria
,
C.
,
Ferreira
,
F.
,
Erlhagen
,
W.
,
Monteiro
,
S.
, and
Bicho
,
E.
,
2018
, “
Position-Based Kinematics for 7-DoF Serial Manipulators With Global Configuration Control, Joint Limit and Singularity Avoidance
,”
Mech. Mach. Theory
,
121
, pp.
317
334
.
40.
Corinaldi
,
D.
,
Angeles
,
J.
, and
Callegari
,
M.
,
2016
, “
Posture Optimization of a Functionally Redundant Parallel Robot
,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
J. P.
Merlet
, eds.,
Springer
,
Cham, Switzerland
, pp.
101
108
.
41.
Jérémie
,
L.
,
2014
, “
Condition-Number Minimization for Functionally Redundant Serial Manipulators
,”
Master thesis
, McGill University, Montreal, QC, Canada.http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&object_id=132902&local_base=GEN01-MCG02
42.
Baillieul
,
J.
,
1986
, “
Avoiding Obstacles and Resolving Kinematic Redundancy
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 7–10, pp.
1698
1704
.
43.
Tsai
,
L.-W.
,
2001
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Washington, DC
.
44.
Whitney
,
D. E.
,
1972
, “
The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators
,”
ASME J. Dyn. Sys., Meas., Control
,
94
(
4
), pp.
303
309
.
45.
Meyer
,
C. D.
,
2000
,
Matrix Analysis and Applied Linear Algebra
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
46.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
47.
Nokleby
,
S. B.
, and
Podhorodeski
,
R. P.
,
2001
, “
Reciprocity-Based Resolution of Velocity Degeneracies (Singularities) for Redundant Manipulators
,”
Mech. Mach. Theory
,
36
(
3
), pp.
397
409
.
48.
Simas
,
H.
, and
Di Gregorio
,
R.
,
2016
, “
Geometric Error Effects on Manipulators' Positioning Precision: A General Analysis and Evaluation Method
,”
ASME J. Mech. Robot.
,
8
(
6
), p.
061016
.
You do not currently have access to this content.