Many kinematic problems in mechanisms can be represented by polynomial systems. By algebraically analyzing the polynomial systems, we can obtain the kinematic properties of the mechanisms. Among these algebraic methods, approaches based on Gröbner bases are effective. Usually, the analyses are performed for specific mechanisms; however, we often encounter phenomena for which, even within the same class of mechanisms, the kinematic properties differ significantly. In this research, we consider the cases where the parameters are included in the polynomial systems. The parameters are used to express link lengths, displacements of active joints, hand positions, and so on. By analyzing a parametric polynomial system (PPS), we intend to comprehensively analyze the kinematic properties of mechanisms represented by these parameters. In the proposed method, we first express the kinematic constraints in the form of PPS. Subsequently, by calculating the Gröbner cover of the PPS, we obtain the segmentation of the parameter space and valid Gröbner bases for each segment. Finally, we interpret the meaning of the segments and their corresponding Gröbner bases. We analyzed planar four- and five-bar linkages and five-bar truss structures using the proposed method. We confirmed that it was possible to enumerate the assembly and working modes and to identify the geometrical conditions that enable overconstrained motions.

References

1.
Cox
,
D. A.
,
Little
,
J.
, and
O'Shea
,
D.
,
2015
,
Ideals, Varieties, and Algorithms
, 4th ed.,
Springer International Publishing
,
Cham, Switzerland
.
2.
Becker
,
T.
, and
Weispfenning
,
V.
,
1993
,
Gröbner Bases: A Computational Approach to Commutative Algebra
,
Springer Science + Business Media
,
New York
.
3.
Dhingra
,
A. K.
,
Almadi
,
A. N.
, and
Kohli
,
D.
,
2001
, “
Closed-Form Displacement and Coupler Curve Analysis of Planar Multi-Loop Mechanisms Using Gröbner Bases
,”
Mech. Mach. Theory
,
36
(
2
), pp.
273
298
.
4.
Rolland
,
L.
,
2005
, “
Certified Solving of the Forward Kinematics Problem With an Exact Algebraic Method for the General Parallel Manipulators
,”
Adv. Rob.
,
19
(
9
), pp.
995
1025
.
5.
Rolland
,
L.
,
2006
, “
Synthesis on Forward Kinematics Problem Algebraic Modeling for the Planar Parallel Manipulator: Displacement-Based Equation Systems
,”
Adv. Rob.
,
20
(
9
), pp.
1035
1065
.
6.
Walter
,
D. R.
,
Husty
,
M. L.
, and
Pfurner
,
M.
, 2009, “
A Complete Kinematic Analysis of the SNU 3-UPU Parallel Robot
,”
Contemp. Math.
,
496
, pp.
331
346
.https://pdfs.semanticscholar.org/1040/1205480d1d562e948796e72d55f949087195.pdf
7.
Tuomela
,
J.
,
2008
, “
Kinematic Analysis of Multibody Systems
,”
BIT Numer. Math.
,
48
(
2
), pp.
405
421
.
8.
Piipponen
,
S.
,
Tuomela
,
J.
, and
Arponen
,
T.
,
2008
, “
Kinematical Analysis of Overconstrained Mechanism Using Computational Geometric Algebra
,”
ASME
Paper No. DETC2008-49193.
9.
Arponen
,
T.
,
Piipponen
,
S.
, and
Tuomela
,
J.
,
2009
, “
Kinematic Analysis of Bricard's Mechanism
,”
Nonlinear Dyn.
,
56
(
1–2
), pp.
85
99
.
10.
Arikawa
,
K.
,
2009
, “
Mobility Analysis of Robotic Mechanisms Based on Computer Algebra
,”
ASME
Paper No. DETC2009-87288.
11.
Piipponen
,
S.
, and
Tuomela
,
J.
,
2013
, “
Algebraic Analysis of Kinematics of Multibody Systems
,”
Mech. Sci.
,
4
(
1
), pp.
33
47
.
12.
Arponen
,
T.
,
Piipponen
,
S.
, and
Tuomela
,
J.
,
2013
, “
Kinematical Analysis of Wunderlich Mechanism
,”
Mech. Mach. Theory
,
70
, pp.
16
31
.
13.
Weispfenning
,
V.
,
1992
, “
Comprehensive Gröbner Bases
,”
J. Symbolic Comput.
,
14
(
1
), pp.
1
29
.
14.
Kapur
,
D.
,
Sun
,
Y.
, and
Wang
,
D.
,
2013
, “
An Efficient Algorithm for Computing a Comprehensive Gröbner System of a Parametric Polynomial System
,”
J. Symbolic Comput.
,
49
, pp.
27
44
.
15.
Wibmer
,
M.
,
2007
, “
Gröbner Bases for Families of Affine or Projective Schemes
,”
J. Symbolic Comput.
,
42
(
8
), pp.
803
834
.
16.
Montes
,
A.
, and
Wibmer
,
M.
,
2010
, “
Gröbner Bases for Polynomial Systems With Parameters
,”
J. Symbolic Comput.
,
45
(
12
), pp.
1391
1425
.
17.
Montes
,
A.
, and
Wibmer
,
M.
,
2014
, “
Software for Discussing Parametric Polynomial Systems: The Gröbner Cover
,”
International Congress on Mathematical Software
,
Seoul, South Korea
,
Aug. 5–9
, pp.
406
413
.
18.
Abánades
,
M. A.
,
Botana
,
F.
,
Montes
,
A.
, and
Recio
,
T.
,
2014
, “
Software Using the Göbner Cover for Geometrical Loci Computation and Classification
,”
International Congress on Mathematical Software
,
Seoul, South Korea
,
Aug. 5–9
, pp.
492
499
.
19.
Montes
,
A.
, and
Schoenemann
,
H.
,
2015
, “
grobcov.lib. A Singular 4-0-2 Library for Computing Gröebner Cover for Parametric Ideals
,” SINGULAR.
20.
Decker
,
W.
,
Greuel
,
G.-M.
,
Pfister
,
G.
, and
Schönemann
,
H.
,
2018
, “
Singular 4-0-2—A Computer Algebra System for Polynomial Computations
,” accessed Nov. 9, 2017, http://www.singular.uni-kl.de
You do not currently have access to this content.