This work introduces a type of motion termed “conceal-and-reveal” which is characterized by a state that protects a payload, a state that exposes the payload, and coupled motions between these two states. As techniques for thick, rigid origami-based engineering designs are being developed, origami is becoming increasingly more attractive as inspiration for complex systems. This paper proposes a process for designing origami-based conceal-and-reveal systems, which can be generalized to design similar thick, rigid origami-based systems. The process is demonstrated through the development of three conceal-and-reveal systems that present a luxury product to the consumer. The three designs also confirm that multiple origami crease patterns can be used to initiate viable approaches to achieving conceal-and-reveal motion.

References

References
1.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.
2.
Shaar
,
N. S.
,
Barbastathis
,
G.
, and
Livermore
,
C.
,
2015
, “
Integrated Folding, Alignment, and Latching for Reconfigurable Origami Microelectromechanical Systems
,”
J. Microelectromech. Syst.
,
24
(
4
), pp.
1043
1051
.
3.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
4.
Han
,
D.
,
Pal
,
S.
,
Nangreave
,
J.
,
Deng
,
Z.
,
Liu
,
Y.
, and
Yan
,
H.
,
2011
, “
DNA Origami With Complex Curvatures in Three-Dimensional Space
,”
Science
,
332
(
6027
), pp.
342
346
.
5.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2016
, “
Design Optimization Challenges of Origami-Based Mechanisms With Sequenced Folding
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051011
.
6.
Wang
,
F.
,
Gong
,
H.
,
Chen
,
X.
, and
Chen
,
C. Q.
,
2016
, “
Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-Based Cylindrical Structures
,”
Sci. Rep.
,
6
, p.
33312
.
7.
Peraza Hernandez
,
E. A.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2016
, “
Kinematics of Origami Structures With Smooth Folds
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061019
.
8.
Ku
,
J. S.
, and
Demaine
,
E. D.
,
2016
, “
Folding Flat Crease Patterns With Thick Materials
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031003
.
9.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
10.
Turner
,
N.
,
Goodwine
,
B.
, and
Sen
,
M.
,
2016
, “
A Review of Origami Applications in Mechanical Engineering
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
14
), pp.
2345
2362
.
11.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
12.
Kling
,
D.
,
Jeon
,
S. K.
, and
Banik
,
J. A.
,
2016
, “
Novel Folding Methods for Deterministic Deployment of Common Space Structures
,”
AIAA
Paper No. 2016–2168.
13.
Butler
,
J.
,
Bowen
,
L.
,
Wilcox
,
E.
,
Shrager
,
A.
,
Frecker
,
M. I.
,
von Lockette
,
P.
,
Simpson
,
T. W.
,
Lang
,
R. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2018
, “
A Model for Multi-Input Mechanical Advantage in Compliant and Origami-Based Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061007
.
14.
Bruton
,
J. T.
,
Nelson
,
T. G.
,
Zimmerman
,
T. K.
,
Fernelius
,
J. D.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Packing and Deploying Soft Origami To and From Cylindrical Volumes With Application to Automotive Airbags
,”
R. Soc. Open Sci.
,
3
(
9
), p.
160429
.
15.
Gioia
,
F.
,
Dureisseix
,
D.
,
Motro
,
R.
, and
Maurin
,
B.
,
2012
, “
Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031003
.
16.
Miura
,
K.
,
1989
, “
A Note on Intrinsic Geometry of Origami
,”
Research of Pattern Formation
,
KTK Scientific Publishers
,
Tokyo, Japan
, pp.
91
102
.
17.
Greenberg
,
H.
,
Gong
,
M.
,
Magleby
,
S. P.
, and
Howell
,
L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
217
225
.
18.
Lang
,
R. J.
,
2011
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
2nd ed.
,
A K Peters/CRC Press
, Boca Raton, FL.
19.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.
20.
Lang
,
R. J.
, and
Howell
,
L.
,
2018
, “
Rigidly Foldable Quadrilateral Meshes From Angle Arrays
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021004
.
21.
Demaine
,
E. D.
, and
Tachi
,
T.
,
2017
, “
Origamizer: A Practical Algorithm for Folding Any Polyhedron
,” 33rd International Symposium on Computational Geometry (
SoCG 2017
),
Brisbane, Australia
,
July 4–7
, pp.
3
8
.https://pdfs.semanticscholar.org/758b/3b9cea1b8391a73ff68846011c7f480fe7a0.pdf
22.
Tachi
,
T.
,
2013
, “
Designing Freeform Origami Tessellations by Generalizing Resch's Patterns
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111006
.
23.
Francis
,
K. C.
,
Rupert
,
L. T.
,
Lang
,
R. J.
,
Morgan
,
D. C.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
From Crease Pattern to Product: Considerations to Engineering Origami-Adapted Designs
,”
ASME
Paper No. DETC2014-34031.
24.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Gadgets and Tessellations
,”
R. Soc. Open Sci.
,
2
(
9
), p.
150067
.
25.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
.
26.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modeling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. A
,
466
(
2119
), pp.
2155
2174
.
27.
Wang
,
K.
, and
Chen
,
Y.
,
2011
, “
Folding a Patterned Cylinder by Rigid Origami
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
P.
Wang-Iverson
,
R.
Lang
, and
M.
Yim
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
265
276
.
28.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spat. Struct.
,
50
(
3
), pp.
173
179
.https://www.ingentaconnect.com/content/iass/jiass/2009/00000050/00000003/art00009
29.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Twists
,”
Origami 6: I. Mathematics
,
CRC Press
,
Boca Raton, FL
, pp.
119
130
.
30.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2017
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.
31.
Tachi
,
T.
,
2011
, “
Rigid-Foldable Thick Origami
,”
Origami 6: Fifth International Meeting of Origami Science, Mathematics, and Education
,
P.
Wang-Iverson
,
R.
Lang
, and
M.
Yim
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
253
264
.
32.
Hoberman
,
C.
,
1991
, “
Reversibly Expandable Structures
,” U.S. Patent No. 4,981,732.
33.
Hoberman
,
C.
,
2010
, “
Folding Structures Made of Thick Hinged Sheets
,” U.S. Patent No. 7,794,019 B2.
34.
Abel
,
Z.
,
Cantarella
,
J.
,
Demaine
,
E. D.
,
Eppstein
,
D.
,
Hull
,
T. C.
,
Ku
,
J. S.
,
Lang
,
R. J.
, and
Tachi
,
T.
,
2016
, “
Rigid Origami Vertices: Conditions and Forcing Sets
,”
J. Comput. Geometry
,
7
(
1
), pp.
171
184
.
35.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
36.
Yellowhorse
,
A.
,
Lang
,
R. J.
,
Tolman
,
K.
, and
Howell
,
L. L.
,
2018
, “
Creating Linkage Permutations to Prevent Self-Intersection and Enable Deployable Networks of Thick-Origami
,”
Sci. Rep.
,
8
(
1
), p.
12936
.
37.
Lang
,
R. J.
,
Nelson
,
T.
,
Magleby
,
S.
, and
Howell
,
L.
,
2017
, “
Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021013
.
38.
Kusiak
,
A.
, and
Wang
,
J.
,
1993
, “
Decomposition of the Design Process
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
687
695
.
39.
Helms
,
M.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.
40.
Watanabe
,
N.
, and
Kawaguchi
,
K.-I.
,
2009
, “
The Method for Judging Rigid Foldability
,”
Origami 4: Fourth International Meeting of Origami Science, Mathematics, and Education
,
R. J.
Lang
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
165
174
.
41.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,” International Association for Shell and Spatial Structures (
IASS
)
Symposium, Shanghai, China
,
Nov. 8–12
, pp.
458
460
.http://origami.c.u-tokyo.ac.jp/~tachi/cg/DesignOfRigidOrigamiStructures_tachi_IASS2010.pdf
42.
Schenk
,
M.
,
Viquerat
,
A. D.
,
Seffen
,
K. A.
, and
Guest
,
S. D.
,
2014
, “
Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization
,”
J. Spacecr. Rockets
,
51
(
3
), pp.
762
778
.
43.
Mattson
,
C. A.
, and
Sorensen
,
C. D.
,
2013
,
Fundamentals of Product Development
,
5th ed.
,
Brigham Young University
,
Provo, UT
.
44.
Wang-Iverson
,
P.
,
Lang
,
R. J.
, and
Yim
,
M.
,
2016
,
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
CRC Press
,
Boca Raton, FL
.
45.
Miura
,
K.
,
Kawaskai
,
T.
,
Tachi
,
T.
,
Uehara
,
R.
, and
Lang
,
R. J.
,
2016
,
Origami 6: Sixth International Meeting of Origami Science, Mathematics, and Education
,
American Mathematical Society
, Providence, RI.
46.
Lang
,
R. J. R. J.
,
2018
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press
,
Boca Raton, FL
.
47.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2015
, “
Origami Actuator Design and Networking Through Crease Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091401
.
48.
Morgan
,
M. R.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Towards Developing Product Applications of Thick Origami Using the Offset Panel Technique
,”
Mech. Sci.
,
7
(
1
), pp.
69
77
.
49.
Edmondson
,
B. J.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
An Offset Panel Technique for Thick Rigidily Foldable Origami
,”
ASME
Paper No. DETC2014-35606.
50.
Chen
,
G.
,
Zhang
,
S.
, and
Li
,
G.
,
2013
, “
Multistable Behaviors of Compliant Sarrus Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021005
.
51.
Yoshimura
,
Y.
,
1955
, “
On the Mechanism of Buckling of a Circular Cylindrical Shell Under Axial Compression
,” NACA, Washington, DC, Report No. 1390.
52.
Miura
,
K.
,
1969
, “
Proposition of Pseudo-Cylindrical Concave Polyhedral Shells
,”
ISAS Rep.
,
34
(
9
), pp.
141
163
.https://ci.nii.ac.jp/naid/110001101617/en
53.
Norton
,
R. L.
,
2011
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
5th ed.
,
McGraw-Hill
, New York.
You do not currently have access to this content.