This paper extends the use of velocity decomposition of underactuated mechanical systems to the design of an enhanced hybrid zero dynamics (HZD)-based controller for biped robots. To reject velocity disturbances in the unactuated degree-of-freedom, a velocity decomposition-enhanced controller implements torso and leg offsets that are proportional to the error in the time derivative of the unactuated velocity. The offsets are layered on top of an HZD-based controller to preserve simplicity of implementation. Simulation results with a point-foot, three-link planar biped show that the proposed method has nearly identical performance to transverse linearization feedback control and outperforms conventional HZD-based control. Curved feet are implemented in simulation and show that the proposed control method is valid for both point-foot and curved-foot planar bipeds. Performance of each controller is assessed by (1) the magnitude of the disturbance it can reject by numerically computing the basin of attraction, (2) the speed of return to nominal step velocity following a disturbance at every point of the gait cycle, and (3) the energetic efficiency, which is measured via the specific cost of transport. Several gaits are analyzed to demonstrate that the observed trends are consistent across different walking speeds.

References

References
1.
Bhounsule
,
P. A.
,
Cortell
,
J.
,
Grewal
,
A.
,
Hendriksen
,
B.
,
Karssen
,
J. G. D.
,
Paul
,
C.
, and
Ruina
,
A.
,
2014
, “
Low-Bandwidth Reflex-Based Control for Lower Power Walking: 65 km on a Single Battery Charge
,”
Int. J. Rob. Res.
,
33
(
10
), pp.
1305
1321
.
2.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J. H.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
CRC Press
, Boca Raton, FL.
3.
Gupta
,
S.
, and
Kumar
,
A.
,
2017
, “
A Brief Review of Dynamics and Control of Underactuated Biped Robots
,”
Adv. Rob.
,
31
(
12
), pp.
607
623
.
4.
Martin
,
A. E.
,
Post
,
D. C.
, and
Schmiedeler
,
J. P.
,
2014
, “
Design and Experimental Implementation of a Hybrid Zero Dynamics-Based Controller for Planar Bipeds With Curved Feet
,”
Int. J. Rob. Res.
,
33
(
7
), pp.
988
1005
.
5.
Martin
,
A. E.
, and
Schmiedeler
,
J. P.
,
2014
, “
Predicting Human Walking Gaits With a Simple Planar Model
,”
J. Mech.
,
47
(
6
), pp.
1416
1421
.
6.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
, and
Koditschek
,
D. E.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.
7.
Westervelt
,
E. R.
,
Buche
,
G.
, and
Grizzle
,
J. W.
,
2004
, “
Experimental Validation of a Framework for the Design of Controllers That Induce Stable Walking in Planar Bipeds
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
559
582
.
8.
Yang
,
T.
,
Westervelt
,
E. R.
,
Schmiedeler
,
J. P.
, and
Bockbrader
,
R. A.
,
2008
, “
Design and Control of a Planar Bipedal Robot ERNIE With Parallel Knee Compliance
,”
Auton. Robots
,
25
(
4
), pp.
317
330
.
9.
Chevallereau
,
C.
,
Westervelt
,
E. R.
, and
Grizzle
,
J. W.
,
2005
, “
Asymptotically Stable Running for a Five-Link, Four-Actuator, Planar Bipedal Robot
,”
Int. J. Rob. Res.
,
24
(
6
), pp.
431
464
.
10.
Sreenath
,
K.
,
Park
,
H.-W.
,
Poulakakis
,
I.
, and
Grizzle
,
J.
,
2013
, “
Embedding Active Force Control Within the Compliant Hybrid Zero Dynamics to Achieve Stable, Fast Running on MABEL
,”
Int. J. Rob. Res.
,
32
(
3
), pp.
324
345
.
11.
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2009
, “
The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1779
1793
.
12.
Yang
,
T.
,
Westervelt
,
E. R.
,
Serrani
,
A.
, and
Schmiedeler
,
J. P.
,
2009
, “
A Framework for the Control of Stable Aperiodic Walking in Underactuated Planar Bipeds
,”
Auton. Robots
,
27
(
3
), pp.
277
290
.
13.
Chevallereau
,
C.
,
Grizzle
,
J. W.
, and
Shih
,
C. L.
,
2009
, “
Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
37
50
.
14.
Shih
,
C.-L.
,
Grizzle
,
J. W.
, and
Chevallereau
,
C.
,
2012
, “
From Stable Walking to Steering of a 3D Bipedal Robot With Passive Point Feet
,”
Robotica
,
30
(
7
), pp.
1119
1130
.
15.
Buss
,
B. G.
,
Ramezani
,
A.
,
Hamed
,
K. A.
,
Griffin
,
B. A.
,
Galloway
,
K. S.
, and
Grizzle
,
J. W.
,
2014
, “
Preliminary Walking Experiments With Underactuated 3D Bipedal Robot MARLO
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)
,
Chicago, IL
,
Sept. 14–18
, pp.
2529
2536
.
16.
Hamed
,
K. A.
, and
Grizzle
,
J. W.
,
2014
, “
Event-Based Stabilization of Periodic Orbits for Underactuated 3-D Bipedal Robots With Left-Right Symmetry
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
365
381
.
17.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
62
82
.
18.
McGeer
,
T.
,
1990
, “
Passive Walking With Knees
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Cincinnati, OH
,
May 13–18
, pp.
1640
1645
.
19.
Chen
,
T.
,
Ni
,
X.
,
Schmiedeler
,
J. P.
, and
Goodwine
,
B.
,
2017
, “
Using a Nonlinear Mechanical Control Coupling Metric for Biped Robot Control and Design
,”
International Conference on Methods and Models in Automation and Robotics
(
MMAR
),
Miedzyzdroje, Poland
,
Aug. 28–31
, pp.
903
908
.
20.
Post
,
D. C.
, and
Schmiedeler
,
J. P.
,
2014
, “
Velocity Disturbance Rejection for Planar Bipeds Walking With HZD-Based Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Chicago, IL
,
Sept. 14–18
, pp.
4882
4887
.
21.
Griffin
,
B.
, and
Grizzle
,
J.
,
2015
, “
Walking Gait Optimization for Accommodation of Unknown Terrain Height Variations
,”
American Control Conference
(
ACC
),
Chicago, IL
,
July 1–3
, pp.
4810
4817
.
22.
Da
,
X.
,
Hartley
,
R.
, and
Grizzle
,
J. W.
,
2017
, “
Supervised Learning for Stabilizing Underactuated Bipedal Robot Locomotion, With Outdoor Experiments on the Wave Field
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Singapore, May
29–June 3
, pp.
3476
3483
.
23.
Nguyen
,
Q.
,
Agrawal
,
A.
,
Da
,
X.
,
Martin
,
W. C.
,
Geyer
,
H.
,
Grizzle
,
J. W.
, and
Sreenath
,
K.
,
2017
, “
Dynamic Walking on Randomly-Varying Discrete Terrain With One-Step Preview
,”
Robotics: Science and Systems
(
RSS
),
Cambridge, MA
,
July 12–16
.http://www.roboticsproceedings.org/rss13/p72.pdf
24.
Banaszuk
,
A.
, and
Hauser
,
J.
,
1995
, “
Feedback Linearization of Transverse Dynamics for Periodic Orbits
,”
Syst. Control Lett.
,
26
(
2
), pp.
95
105
.
25.
Shiriaev
,
A.
,
Perram
,
J. W.
, and
de Wit
,
C. C.
,
2005
, “
Constructive Tool for Orbital Stabilization of Underactuated Nonlinear Systems: Virtual Constraints Approach
,”
IEEE Trans. Autom. Control
,
50
(
8
), pp.
1164
1176
.
26.
Shiriaev
,
A. S.
,
Freidovich
,
L. B.
, and
Manchester
,
I. R.
,
2008
, “
Periodic Motion Planning and Analytical Computation of Transverse Linearizations for Hybrid Mechanical Systems
,”
IEEE
Conference on Decision and Control
,
Cancun, Mexico
,
Dec. 9–11
, pp.
4326
4331
.
27.
Tang
,
J. Z.
,
Boudali
,
A. M.
, and
Manchester
,
I. R.
,
2017
, “
Invariant Funnels for Underactuated Dynamic Walking Robots: New Phase Variable and Experimental Validation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Singapore
,
May 29–June 3
, pp.
3497
3504
.
28.
Freidovich
,
L. B.
,
Shiriaev
,
A. S.
, and
Manchester
,
I. R.
,
2008
, “
Stability Analysis and Control Design for an Underactuated Walking Robot Via Computation of a Transverse Linearization
,”
IFAC Proc.
,
41
(
2
), pp.
10166
10171
.
29.
Manchester
,
I. R.
,
Mettin
,
U.
,
Iida
,
F.
, and
Tedrake
,
R.
,
2011
, “
Stable Dynamic Walking Over Uneven Terrain
,”
Int. J. Rob. Res.
,
30
(
3
), pp.
265
279
.
30.
Fevre
,
M.
,
Goodwine
,
B.
, and
Schmiedeler
,
J. P.
,
2018
, “
Design and Experimental Validation of a Velocity Decomposition-Based Controller for Underactuated Planar Bipeds
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1896
1903
.
31.
Nightingale
,
J.
,
Hind
,
R.
, and
Goodwine
,
B.
,
2008
, “
Intrinsic Vector-Valued Symmetric Form for Simple Mechanical Control Systems in the Nonzero Velocity Setting
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Pasadena, CA
,
May 19–23
, pp.
2435
2440
.
32.
Post
,
D. C.
,
Goodwine
,
B.
, and
Schmiedeler
,
J. P.
,
2015
, “
Quantifying Control Authority in Periodic Motions of Underactuated Mobile Robots
,”
ASME
Paper No. DETC2015-47666.
33.
Nightingale
,
J.
,
Hind
,
R.
, and
Goodwine
,
B.
,
2010
,
A Stopping Algorithm for Mechanical Systems
,
Springer
,
Berlin
, pp.
167
180
.
34.
Goodwine
,
B.
, and
Nightingale
,
J.
,
2010
, “
The Effect of Dynamic Singularities on Robotic Control and Design
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Anchorage, AK
,
May 3–8
, pp.
5213
5218
.
35.
Chen
,
T.
,
Schmiedeler
,
J. P.
, and
Goodwine
,
B.
,
2018
, “
A Study of the Relationship Between a Mechanical Coupling Metric and Gait Characteristics for an Ankle-Actuated Biped Robot
,”
IEEE International Conference on Control, Automation, Robotics and Vision
,
Singapore
,
Nov. 18–21
, pp.
1
6
.
36.
Isidori
,
A.
,
2013
,
Nonlinear Control Systems
,
Springer Science & Business Media
, Berlin.
37.
Shiriaev
,
A.
,
Freidovich
,
L.
, and
Manchester
,
I.
,
2008
, “
Can We Make a Robot Ballerina Perform a Pirouette? Orbital Stabilization of Periodic Motions of Underactuated Mechanical Systems
,”
Annu. Rev. Control
,
32
(
2
), pp.
200
211
.
38.
Perram
,
J. W.
,
Shiriaev
,
A.
,
de Wit
,
C. C.
, and
Grognard
,
F.
,
2003
, “
Explicit Formula for a General Integral of Motion for a Class of Mechanical Systems Subject to Holonomic Constraint
,”
IFAC Proc.
,
36
(
2
), pp.
87
92
.
You do not currently have access to this content.