This work seeks to systematically model and solve the equations associated with the kinematics of spherical mechanisms. The group of special unitary matrices, SU(2), is utilized throughout. Elements of SU(2) are employed here to analyze the three-roll wrist and the spherical Watt I linkage. Additionally, the five orientation synthesis of a spherical four-bar mechanism is solved, and solutions are found for the eight orientation synthesis of the Watt I linkage. Using SU(2) readily allows for the use of a homotopy-continuation-based solver, in this case Bertini. The use of Bertini is motivated by its capacity to calculate every solution to a design problem.

References

References
1.
Uicker
,
J. J.
,
Ravani
,
B.
, and
Sheth
,
P. N.
,
2013
,
Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
2.
Angeles
,
J.
,
Hommel
,
G.
, and
Kovács
,
P.
,
1993
, “
Computational Kinematics
,”
Solid Mechanics and Its Applications
, Vol.
28
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
3.
Wampler
,
W. C.
,
2004
, “
Displacement Analysis of Spherical Mechanisms Having Three or Fewer Loops
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
93
100
.
4.
Dhingra
,
A.
,
Almadi
,
A.
, and
Kohli
,
D.
,
2000
, “
Closed-Form Displacement Analysis of 8, 9 and 10-Link Mechanisms—Part I: 8-Link 1-Dof Mechanisms
,”
Mech. Mach. Theory
,
35
(
6
), pp.
821
850
.
5.
Tsai
,
L.-W.
, and
Morgan
,
A. P.
,
1985
, “
Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods
,”
ASME J. Mech., Trans., Autom
,
107
(
2
), pp.
189
200
.
6.
Wampler
,
C. W.
,
1996
, “
Isotropic Coordinates, Circularity, and Bezout Numbers: Planar Kinematics From a New Perspective
,”
ASME
Paper No. DETC96/MECH-1210. https://pdfs.semanticscholar.org/c67f/419901422bc030f4631623f3fb7df6462cd1.pdf
7.
Shuster
,
M. D.
,
1993
, “
A Survey of Attitude Representations
,”
J. Astronaut. Sci.
,
41
(
4
), pp.
439
517
.
8.
Spring
,
K. W.
,
1986
, “
Euler Parameters and the Use of Quaternion Algebra in the Manipulation of Finite Rotations: A Review
,”
Mech. Mach. Theory
,
21
(
5
), pp.
365
373
.
9.
Goldstein
,
H.
,
Poole
,
C.
, and
Safko
,
J.
,
2002
,
Classical Mechanics
,
3rd ed.
,
Addison Wesley
,
San Francisco, CA
.
10.
Rooney
,
J.
,
1977
, “
A Survey of Representations of Spatial Rotation About a Fixed Point
,”
Environ. Plann. B
,
4
(
2
), pp.
185
210
.
11.
Altmann
,
S. L.
,
2005
,
Rotations, Quaternions, and Double Groups
,
Dover Publications
,
Mineola, NY
.
12.
Roth
,
B.
, and
Freudenstein
,
F.
,
1963
, “
Synthesis of Path-Generating Mechanisms by Numerical Methods
,”
ASME J. Eng. Ind.
,
85
(
3
), pp.
298
304
.
13.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
153
159
.
14.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems With Bertini
,
Society of Industrial and Applied Mathematics
,
Philadelphia, PA
.
15.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
MIT Press
,
Cambridge, UK
.
16.
Brunnthaler
,
K.
,
Schröcker
,
H.-P.
, and
Husty
,
M.
,
2006
, “
Synthesis of Spherical Four-Bar Mechanisms Using Spherical Kinematic Mapping
,”
Advances in Robot Kinematics
,
Springer
,
Cham, Switzerland
, pp.
377
384
.
17.
Plecnik
,
M.
,
McCarthy
,
J. M.
, and
Wampler
,
C. W.
,
2014
, “
Kinematic Synthesis of a Watt I Six-Bar Linkage for Body Guidance
,”
Advances in Robot Kinematics
,
Springer
,
Cham, Switzerland
, pp.
317
325
.
18.
Ohio Supercomputer Center
,
1987
, “Ohio Supercomputer Center,” Ohio Supercomputer, Columbus, OH, accessed Oct. 9, 2018, http://osc.edu/ark:/19495/f5s1ph73
You do not currently have access to this content.