This work presents a lightweight soft rehabilitation glove that integrates finger and wrist function by developing and applying the double-DOF soft pneumatic bending actuators (DPBAs). The proposed soft glove can achieve separate as well as coordinated motion exercises of fingers and the wrist, which benefits stroke patients who have complicated hand impairment. It consists of a commercial glove extended by a customized wrist bracer, on which are installed three dorsal DPBAs through fingers (index/middle/ring) and the wrist, two dorsal single-DOF pneumatic bending actuators (SPBAs) through thumb/pinky, and three palmar SPBAs through wrist. The proposed DPBA has two independent bendable segments to actuate flexion of finger and wrist, respectively, whose multigait bending conforms with multipattern flexion of the biological hand. The SPBAs are used for actuating wrist extension or finger flexion. The proposed wrist bracer is designed as an extension of the glove to install the soft actuators and transfer their motion and force to the wearer's wrist efficiently as well as minimize unactuated restriction on the hand. To verify its feasibility, we evaluate the range of motion (ROM), strength and speed of five subjects' hands assisted by the glove in six different passive motions. Results show that the proposed glove can provide sufficient assistance for stroke patients in hand rehabilitation exercise. Furthermore, the soft glove has potential in extending the hand functional training from simple exercises such as closing/opening and gripping to complex ones such as weightlifting, writing, and screwing/unscrewing.

References

References
1.
Polygerinos
,
P.
,
Lyne
,
S.
,
Wang
,
Z.
,
Nicolini
,
L. F.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
, and
Walsh
,
C. J.
,
2013
, “
Towards a Soft Pneumatic Glove for Hand Rehabilitation
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
1512
1517
.
2.
Yap
,
H. K.
,
Lim
,
J. H.
,
Nasrallah
,
F.
,
Goh
,
J. C. H.
, and
Yeow
,
R. C. H.
,
2015
, “
A Soft Exoskeleton for Hand Assistive and Rehabilitation Application Using Pneumatic Actuators With Variable Stiffness
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
4967
4972
.
3.
Polygerinos
,
P.
,
Galloway
,
K. C.
,
Savage
,
E.
,
Herman
,
M.
,
Donnell
,
K. O.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Hand Rehabilitation and Task Specific Training
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
2913
2919
.
4.
Yap
,
H. K.
,
Khin
,
P. M.
,
Koh
,
T. H.
,
Sun
,
Y.
,
Liang
,
X.
,
Lim
,
J. H.
, and
Yeow
,
C. H.
,
2017
, “
A Fully Fabric-Based Bidirectional Soft Robotic Glove for Assistance and Rehabilitation of Hand Impaired Patients
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1383
1390
.
5.
Yap
,
H. K.
,
Lim
,
J. H.
,
Hong Goh
,
J. C.
, and
Yeow
,
C.-H.
,
2016
, “
Design of a Soft Robotic Glove for Hand Rehabilitation of Stroke Patients With Clenched Fist Deformity Using Inflatable Plastic Actuators
,”
ASME J. Med. Devices
,
10
(
4
), p.
044504
.
6.
Popov
,
D.
,
Gaponov
,
I.
, and
Ryu
,
J. H.
,
2017
, “
Portable Exoskeleton Glove With Soft Structure for Hand Assistance in Activities of Daily Living
,”
IEEE/ASME Trans. Mechatronics
,
22
(
2
), pp.
865
875
.
7.
Noritsugu
,
T.
,
Yamamoto
,
H.
,
Sasakil
,
D.
, and
Takaiwa
,
M.
,
2004
, “
Wearable Power Assist Device for Hand Grasping Using Pneumatic Artificial Rubber Muscle
,”
Annual Conference
(
SICE
), Kurashiki, Japan, Sept. 22, pp.
420
425
.
8.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Robot. Auton. Syst.
,
73
, pp.
135
143
.
9.
Yap
,
H. K.
,
Ang
,
B. W.
,
Lim
,
J. H.
,
Goh
,
J. C.
, and
Yeow
,
C. H.
,
2016
, “
A Fabric-Regulated Soft Robotic Glove With User Intent Detection Using EMG and RFID for Hand Assistive Application
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–31, pp.
3537
3542
.
10.
Yap
,
H. K.
,
Kamaldin
,
N.
,
Lim
,
J. H.
,
Nasrallah
,
F. A.
,
Goh
,
J. C. H.
, and
Yeow
,
C. H.
,
2017
, “
A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
6
), pp.
782
793
.
11.
Al-Fahaam
,
H.
,
Davis
,
S.
, and
Nefti-Meziani
,
S.
,
2016
, “
Power Assistive and Rehabilitation Wearable Robot Based on Pneumatic Soft Actuators
,”
International Conference on Methods and MODELS in Automation and Robotics
(
MMAR
), Miedzyzdroje, Poland, Aug. 29–Sept. 1, pp. 472–477.
12.
Ueki
,
S.
,
Kawasaki
,
H.
,
Ito
,
S.
,
Nishimoto
,
Y.
,
Abe
,
M.
,
Aoki
,
T.
,
Ishigure
,
Y.
,
Ojika
,
T.
, and
Mouri
,
T.
,
2012
, “
Development of a Hand-Assist Robot With Multi-Degrees-of-Freedom for Rehabilitation Therapy
,”
IEEE/ASME Trans. Mechatronics
,
17
(
1
), pp.
136
146
.
13.
Tong
,
K. Y.
,
Ho
,
S. K.
,
Pang
,
P. M.
,
Hu
,
X. L.
,
Tam
,
W. K.
,
Fung
,
K. L.
,
Wei
,
X. J.
,
Chen
,
P. N.
, and
Chen
,
M.
,
2010
, “
An Intention Driven Hand Functions Task Training Robotic System
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC'10
), Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
3406
3409
.
14.
Ates
,
S.
,
Mora-Moreno
,
I.
,
Wessels
,
M.
, and
Stienen
,
A. H.
,
2015
, “
Combined Active Wrist and Hand Orthosis for Home Use: Lessons Learned
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Singapore, Aug. 11–14, pp.
398
403
.
15.
Refour
,
E.
,
Sebastian
,
B.
, and
Ben-Tzvi
,
P.
,
2018
, “
Two-Digit Robotic Exoskeleton Glove Mechanism: Design and Integration
,”
ASME J. Mech. Rob.
,
10
(2), p. 025002.
16.
Ben-Tzvi
,
P.
,
Danoff
,
J.
, and
Ma
,
Z.
,
2016
, “
The Design Evolution of a Sensing and Force-Feedback Exoskeleton Robotic Glove for Hand Rehabilitation Application
,”
ASME J. Mech. Rob.
,
8
(5), p. 051019.
17.
Yap
,
H. K.
,
Ng
,
H. Y.
, and
Yeow
,
C.-H.
,
2016
, “
High-Force Soft Printable Pneumatics for Soft Robotic Applications
,”
Soft Rob.
,
3
(
3
), pp.
144
158
.
18.
Galloway
,
K. C.
,
Polygerinos
,
P.
,
Walsh
,
C. J.
, and
Wood
,
R. J.
,
2013
, “
Mechanically Programmable Bend Radius for Fiber-Reinforced Soft Actuators
,”
16th International Conference on Advanced Robotics
(
ICAR
), Montevideo, Uruguay, Nov. 25–29.
19.
Sun
,
Y.
,
Yap
,
H. K.
,
Liang
,
X.
,
Guo
,
J.
,
Qi
,
P.
,
Ang
,
M. H.
, and
Yeow
,
C.-H.
,
2017
, “
Stiffness Customization and Patterning for Property Modulation of Silicone-Based Soft Pneumatic Actuators
,”
Soft Rob.
,
4
(3), pp. 251–260.
20.
Daerden
,
F.
,
Lefeber
,
D.
,
Daerden
,
F.
, and
Lefeber
,
D.
,
2002
, “
Pneumatic Artificial Muscles: Actuators for Robotics and Automation
,”
Eur. J. Mech. Environ. Eng.
,
47
(
1
), pp.
11
21
.
21.
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Manesis
,
S.
,
2011
, “
A Survey on Applications of Pneumatic Artificial Muscles
,”
19th Mediterranean Conference on Control and Automation
(
MED
), pp.
1439
1446
.
22.
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Manesis
,
S.
,
2015
, “
Motion Control of a Novel Robotic Wrist Exoskeleton Via Pneumatic Muscle Actuators
,”
IEEE International Conference on Emerging Technologies and Factory Automation
(
ETFA
), Luxembourg, Sept. 8–11.
23.
Al-Fahaam
,
H.
,
Davis
,
S.
, and
Nefti-Meziani
,
S.
,
2017
, “
Wrist Rehabilitation Exoskeleton Robot Based on Pneumatic Soft Actuators
,”
International Conference for Students on Applied Engineering
(
ICSAE 2016
), Newcastle upon Tyne, UK, Oct. 20–21, pp.
491
496
.
24.
Mosby
,
2009
,
Mosby's Medical Dictionary
,
9th ed.
, Elsevier, St. Louis, MO.
25.
Mesplié
,
G.
,
2015
, “
Capsulo-Ligamentous Injuries of the Proximal Interphalangeal Joint
,”
Hand and Wrist Rehabilitation
,
Springer International Publishing
, Cham, Switzerland, p.
220
.
26.
Asbeck
,
A. T.
,
De Rossi
,
S. M. M.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2015
, “
A Biologically Inspired Soft Exosuit for Walking Assistance
,”
Int. J. Rob. Res.
,
34
(
6
), pp.
744
762
.
27.
Yap
,
H. K.
,
Ng
,
H. Y.
, and
Yeow
,
C. H.
,
2017
, “
Soft Printable Pneumatics for Wrist Rehabilitation
,”
Biosyst. Biorobotics
,
15
, pp.
545
550
.
28.
Holloway
,
G. A.
,
Daly
,
C. H.
,
Kennedy
,
D.
, and
Chimoskey
,
J.
,
1976
, “
Effects of External Pressure Loading on Human Skin Blood Flow Measured by 133Xe Clearance
,”
J. Appl. Physiol.
,
40
(
4
), pp.
597
600
.
29.
Cool
,
J. C.
,
1989
, “
Biomechanics of Orthoses for the Subluxed Shoulder
,”
Prost. Orthot.
,
13
(
2
), pp.
90
96
.
30.
Aubin
,
P. M.
,
Sallum
,
H.
,
Walsh
,
C.
,
Stirling
,
L.
, and
Correia
,
A.
,
2013
, “
A Pediatric Robotic Thumb Exoskeleton for At-Home Rehabilitation: The Isolated Orthosis for Thumb Actuation (IOTA)
,”
IEEE
International Conference on Rehabilitation Robotics
, Seattle, WA, June 24–26.
31.
Dandekar
,
K.
,
Raju
,
B. I.
, and
Srinivasan
,
M. A.
,
2003
, “
3D Finite-Element Models of Human and Monkey Fingertips to Investigate the Mechanics of Tactile Sense
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
682
691
.
32.
Duruoz
,
M.
,
2014
,
Hand Function: A Practical Guide to Assessment
, Springer, New York.
33.
Ates
,
S.
,
Lobo-Prat
,
J.
,
Lammertse
,
P.
,
van der Kooij
,
H.
, and
Stienen
,
A. H. A.
,
2013
, “
SCRIPT Passive Orthosis: Design and Technical Evaluation of the Wrist and Hand Orthosis for Rehabilitation Training at Home
,”
IEEE 13th International Conference on Rehabilitation Robotics
(
ICORR
), Seattle, WA, June 24–26.
34.
Atlihan
,
M.
,
Akdogan
,
E.
, and
Arslan
,
M. S.
,
2014
, “
Development of a Therapeutic Exercise Robot for Wrist and Forearm Rehabilitation
,”
19th International Conference on Methods and Models in Automation and Robotics
(
MMAR
), Miedzyzdroje, Poland, Sept. 2–5, pp.
52
57
.
35.
Kai
,
Y. H.
,
Yong
,
N. H.
, and
Chen-Hua
,
Y.
,
2016
, “
High-Force Soft Printable Pneumatics for Soft Robotic Applications
,”
Soft Rob.
,
3
(
3
), pp.
144
158
.https://www.liebertpub.com/doi/pdf/10.1089/soro.2016.0030
36.
Gazzoni
,
M.
,
Celadon
,
N.
,
Mastrapasqua
,
D.
,
Paleari
,
M.
,
Margaria
,
V.
, and
Ariano
,
P.
,
2014
, “
Quantifying Forearm Muscle Activity During Wrist and Finger Movements by Means of Multi-Channel Electromyography
,”
PLoS One
,
9
(
10
), p. e109943.
37.
Matheus
,
K.
, and
Dollar
,
A. M.
,
2010
, “
Benchmarking Grasping and Manipulation: Properties of the Objects of Daily Living
,”
IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
5020
5027
.
38.
The MI.MU Gloves Project, 2013, “
DIY Arduino Data Gloves (2013)
,” MI.MU GLOVES LIMITED, London, accessed Dec. 9, 2018, https://www.plusea.at/?p=5520
39.
Barnett
,
C. H.
, and
Cobbold
,
A. F.
,
1968
, “
Effects of Age Upon the Mobility of Human Finger Joints
,”
Ann. Rheum. Dis.
,
27
(
2
), pp.
175
177
.
40.
Dionysian
,
E.
,
Kabo
,
J. M.
,
Dorey
,
F. J.
, and
Meals
,
R. A.
,
2005
, “
Proximal Interphalangeal Joint Stiffness: Measurement and Analysis
,”
J. Hand Surg.
,
30
(
3
), pp.
573
579
.
41.
Ingram
,
J. N.
,
Körding
,
K. P.
,
Howard
,
I. S.
, and
Wolpert
,
D. M.
,
2008
, “
The Statistics of Natural Hand Movements
,”
Exp. Brain Res.
,
188
(
2
), pp.
223
236
.
You do not currently have access to this content.