In minimally invasive surgery (MIS), surgeons often suffer from occlusion region problems. It is difficult to solve these problems with traditional surgical instruments because of their size and rigid mechanical structure, such as endoscopes and corresponding operating tools. Thus, flexible manipulators and related robotic systems have been proposed for enhancing intraoperative inspection and surgical operation in MIS. Although a variety of flexible manipulators using different mechanisms have been developed, most of them are designed with a single function. In this paper, we present the concept of visible forceps that enriches the forceps function, which realizes the flexible bending capability and high output force, as well as the integrated endoscopic function. We developed a novel simplified linkage bending mechanism for forceps with a bendable tip and fabricated a robotic visible forceps manipulator system. According to this prototype, we performed experiments to evaluate the mechanical performance and the abdominal phantom test to evaluate the feasibility and usefulness. Preliminary results show that the forceps manipulator can realize both flexible bending capability and high output force, which implies promising applications in future MIS.

References

References
1.
Fuchs
,
K. H.
,
2002
, “
Minimally Invasive Surgery
,”
Endoscopy
,
34
(
2
), pp.
154
159
.
2.
Yadav
,
Y. R.
,
Parihar
,
V.
, and
Kher
,
Y.
,
2013
, “
Complication Avoidance and Its Management in Endoscopic Neurosurgery
,”
Neurol. India
,
61
(
3
), pp.
217
225
.
3.
Cianchetti
,
M.
,
Ranzani
,
T.
,
Gerboni
,
G.
,
Nanayakkara
,
T.
,
Althoefer
,
K.
, and
Dasgupta
,
P.
, “
Soft Robotics Technologies to Address Shortcomings in Today's Minimally Invasive Surgery: The STIFF-FLOP Approach
,”
Soft Rob.
,
1
(
2
), pp.
122
131
.
4.
Ranzani
,
T.
,
Gerboni
,
G.
,
Cianchetti
,
M.
, and
Menciassi
,
A.
,
2015
, “
A Bioinspired Soft Manipulator for Minimally Invasive Surgery
,”
Bioinspir. Biomim
,
10
(
3
), p.
035008
.
5.
Ranzani
,
T.
,
Cianchetti
,
M.
,
Gerboni
,
G.
,
Falco
,
I. D.
, and
Menciassi
,
A.
, 2016, “
A Soft Modular Manipulator for Minimally Invasive Surgery: Design and Characterization of a Single Module
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
187
200
.
6.
Dai
,
J. S.
,
2010
, “
Surgical Robotics and Its Development and Progress
,”
Robotica
,
28
(
2
), p.
161
.
7.
Kuo
,
C.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
8
(
2
), pp.
127
145
.
8.
Catherine
,
J.
,
Rotinat-Libersa
,
C.
, and
Micaelli
,
A.
,
2011
, “
Comparative Review of Endoscopic Devices Articulations Technologies Developed for Minimally Invasive Medical Procedures
,”
Appl. Bionics Biomech.
,
8
(
2
), pp.
151
171
.
9.
Jelinek
,
F.
,
Arkenbout
,
E. A.
,
Henselmans
,
P. W. J.
,
Pessers
,
R.
, and
Breedveld
,
P.
,
2014
, “
Classification of Joints Used in Steerable Instruments for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
8
(3), p.
030914
.
10.
Krovi
,
V.
,
2015
, “
Robotic Surgery: In Safe Hands
,” Mechanical Engineering-CIME, Lisbon, Portugal, Oct. 3–4, p.
50
.
11.
Madhani
,
A. J.
, and
Salisbury
,
J. K.
,
1998
, “
Wrist Mechanism for Surgical Instrument for Performing Minimally Invasive Surgery With Enhanced Dexterity and Sensitivity
,” Intuitive Surgical Operations Inc., U.S. Patent No.
5,797,900
.https://patents.google.com/patent/US5797900A/en
12.
Jelinek
,
F.
,
Pessers
,
R.
, and
Breedveld
,
P.
,
2014
, “
DragonFlex Smart Steerable Laparoscopic Instrument
,”
ASME J. Med. Devices
,
8
(
1
), p.
015001
.
13.
Podsedkowski
,
L.
,
2005
, “
RobIn Heart 0, 1 and 3—Mechanical Construction Development
,”
Bull. Pol. Acad. Sci.
,
53
(
1
), pp.
79
85
.http://bluebox.ippt.pan.pl/~bulletin/(53-1)79.html
14.
Ota
,
T.
,
Degani
,
A.
,
Zubiate
,
Wolf
,
A.
,
Choset
,
H.
,
Schwartzman
,
D.
, and
Zenati
,
M. A.
,
2006
, “
Epicardial Atrial Ablation Using a Novel Articulated Robotic Medical Probe Via Percutaneous Subxiphoid Approach
,”
Innovations: Technol. Tech. Cardiothoracic Vasc. Surg.
,
1
(
6
), pp.
335
340
.
15.
Bajo
,
A.
,
Goldman
,
R. E.
,
Wang
,
L.
, and
Fowler
,
D.
,
2012
, “
Integration and Preliminary Evaluation of an Insertable Robotic Effectors Platform for Single Port Access Surgery
,”
IEEE
International Conference on Robotics and Automation
(ICRA), St. Paul, MN, May 14–18, pp.
3381
3387
.
16.
Li
,
Z.
,
Ren
,
H.
,
Chiu
,
P. W. Y.
,
Du
,
R.
, and
Yu
,
H.
,
2016
, “
A Novel Constrained Wire-Driven Flexible Mechanism and Its Kinematic Analysis
,”
Mech. Mach. Theory
,
95
, pp.
59
75
.
17.
Greef
,
A. D.
,
Lambert
,
P.
, and
Delchambre
,
A.
,
2009
, “
Towards Flexible Medical Instruments: Review of Flexible Fluidic Actuators
,”
Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol.
,
33
(
4
), pp.
311
321
.
18.
Diodato
,
A.
,
Brancadoro
,
M.
,
De Rossi
,
G.
,
Abidi
,
H.
,
Dall'Alba
,
D.
,
Muradore
,
R.
, and
Cianchetti
,
M.
,
2018
, “
Soft Robotic Manipulator for Improving Dexterity in Minimally Invasive Surgery
,”
Surgical Innovation
,
25
(
1
), pp.
69
76
.
19.
Giataganas
,
P.
,
Evangeliou
,
N.
,
Koveos
,
Y.
, and
Kelasidi
,
E.
,
2011
, “
Design and Experimental Evaluation of an Innovative SMA-Based Tendon-Driven Redundant Endoscopic Robotic Surgical Tool
,”
19th Mediterranean Conference on Control and Automation
(
MED
), Corfu, Greece, June 20–23, pp.
1071
1075
.
20.
Shi
,
Z. Y.
,
Liu
,
D.
, and
Wang
,
T. M.
,
2014
, “
A Shape Memory Alloy‐Actuated Surgical Instrument With Compact Volume
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
10
(
4
), pp.
474
481
.
21.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2014
, “
A Novel 4-DOFs Origami Enabled, SMA Actuated, Robotic End-Effector for Minimally Invasive Surgery
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
2844
2849
.
22.
Dombre
,
E.
,
Michelin
,
M.
,
Pierrot
,
F.
,
Poignet
,
P.
,
Bidaud
,
P.
, and
Morel
,
G.
,
2004
, “
MARGE Project: Design, Modeling, and Control of Assistive Devices for Minimally Invasive Surgery
,”
Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention
, Rennes, Saint-Malo, France, Sept. 26–30.
23.
Piccigallo
,
M.
,
Scarfogliero
,
U.
,
Quaglia
,
C.
,
Petroni
,
G.
,
Valdastri
,
P.
, and
Menciassi
,
A.
,
2010
, “
Design of a Novel Bimanual Robotic System for Single-Port Laparoscopy
,”
IEEE Trans. J. Mechatronics
,
15
(
6
), pp.
871
878
.
24.
Shang
,
J.
,
Noonan
,
D. P.
,
Payne
,
C.
,
Clark
,
J.
,
Sodergren
,
M. H.
,
Darzi
,
A.
, and
Yang
,
G.-Z.
,
2011
, “
An Articulated Universal Joint Based Flexible Access Robot for Minimally Invasive Surgery
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
1147
1152
.
25.
Eslami
,
S.
,
Shang
,
W.
,
Li
,
G.
,
Patel
,
N.
,
Fischer
,
G. S.
, and
Tokuda
,
J.
,
2016
, “
In-Bore Prostate Transperineal Interventions With an MRI-Guided Parallel Manipulator: System Development and Preliminary Evaluation
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
12
(
2
), pp.
199
213
.
26.
Maclachlan
,
R. A.
,
Becker
,
B. C.
,
Tabarés
,
J. C.
,
Podnar
,
G. W.
, Jr.
,
Lobes
,
L. A.
, and
Riviere
,
C. N.
,
2012
, “
Micron: An Actively Stabilized Handheld Tool for Microsurgery
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
195
212
.
27.
Ishii
,
C.
,
2011
, “
Extension of Degree-of-Freedom of Bending Motion for Double-Screw-Drive Mechanism
,”
IEEE
International Conference on Industrial and Information Systems
, Kandy, Sri Lanka, Aug. 16–19, pp.
340
345
.
28.
Ishii
,
C.
, and
Futatsugi
,
T.
,
2013
, “
Design and Control of a Robotic Forceps Manipulator With Screw-Drive Bending Mechanism and Extension of Its Motion Space
,”
First CIRP Conference on BioManufacturing (CIRP-BioM
), Tokyo, Japan, Mar. 4–6, pp.
104
109
.
29.
Yamashita
,
H.
,
Kim
,
D.
,
Hata
,
N.
, and
Dohi
,
T.
,
2003
, “
Multi-Slider Linkage Mechanism for Endoscopic Forceps Manipulator
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Las Vegas, NV, Oct. 27–31, pp.
2577
2582
.
30.
Yamashita
,
H.
,
Matsumiya
,
K.
,
Masamune
,
K.
,
Liao
,
H.
,
Chiba
,
T.
, and
Dohi
,
T.
,
2008
, “
Miniature Bending Manipulator for Fetoscopic Intrauterine Laser Therapy to Treat Twin-to-Twin Transfusion Syndrome
,”
Surg. Endosc.
,
22
(
2
), pp.
430
435
.
31.
Zuo
,
S.
,
Hughes
,
M.
, and
Yang
,
G.
,
2016
, “
Novel Balloon Surface Scanning Device for Intraoperative Breast Endomicroscopy
,”
Ann. Biomed. Eng.
,
44
(
7
), pp.
2313
2326
.
32.
Liao
,
H.
,
Suzuki
,
H.
,
Matsumiya
,
K.
,
Masamune
,
K.
,
Dohi
,
T.
, and
Chiba
,
T.
,
2008
, “
Fetus Supporting Flexible Manipulator With Balloon-Type Stabilizer for Endoscopic Intrauterine Surgery
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
4
(
3
), pp.
214
223
.
33.
Zhang
,
B.
,
Liao
,
Z.
, and
Liao
,
H.
,
2017
, “
Visible Forceps Manipulator With Novel Linkage Bending Mechanism for Neurosurgery
,”
39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Jeju Island, Korea, July 11–15, pp.
4329
4332
.
You do not currently have access to this content.