Compliant shell mechanisms utilize spatially curved thin-walled structures to transfer or transmit force, motion, or energy through elastic deformation. To design spatial mechanisms, designers need comprehensive nonlinear characterization methods, while the existing methods fall short of meaningful comparisons between rotational and translational degrees-of-freedom. This paper presents two approaches, both of which are based on the principle of virtual loads and potential energy, utilizing properties of screw theory, Plücker coordinates, and an eigen-decomposition. This leads to two unification lengths that can be used to compare and visualize all six degrees-of-freedom directions and magnitudes in a nonarbitrary, physically meaningful manner for mechanisms exhibiting geometrically nonlinear behavior.

References

References
1.
Seffen
,
K. A.
,
2012
, “
Compliant Shell Mechanisms
,”
Phil. Trans. R. Soc. A
,
370
(
1965
), pp.
2010
2026
.
2.
Pellegrino
,
S.
,
2005
, “
Bistable Shell Structures
,”
AIAA
Paper No. 2005-1934.
3.
Radaelli
,
G.
, and
Herder
,
J. L.
,
2014
, “
Isogeometric Shape Optimization for Compliant Mechanisms With Prescribed Load Paths
,”
ASME
Paper No. DETC2014-35373.
4.
Nijssen
,
J. P.
,
2016
, “
Design and Analysis of a Shell Mechanism Based Two-Fold Force Controlled Scoliosis Brace
,”
Master's thesis
, TU Delft, Delft, The Netherlands.https://pure.tudelft.nl/portal/en/publications/design-and-analysis-of-a-shell-mechanism-based-twofold-force-controlled-scoliosis-brace(f153c86c-5ead-4470-93b9-93ebac566e4e)/export.html
5.
Kim
,
C. J.
,
2005
, “
A Conceptual Approach to the Computational Synthesis of Compliant Mechanisms
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/125402
6.
Nijssen
,
J. P.
,
Radaelli
,
G.
,
Kim
,
C. J.
, and
Herder
,
J. L.
,
2016
, “
Overview and Kinematic Characterization of Compliant Shell
,” Master's thesis, TU Delft, Delft, The Netherlands.
7.
Lipkin
,
H.
, and
Patterson
,
T.
,
1992
, “
Geometric Properties of Modelled Robot Elasticity—Part I: Decomposition
,” ASME Design Technical Conferences, pp. 179–185.
8.
Lin
,
Q.
,
Burdick
,
J. W.
, and
Rimon
,
E.
,
2000
, “
A Stiffness-Based Quality Measure for Compliant Grasps and Fixtures
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp.
675
688
.
9.
Teichmann
,
M.
,
1996
, “
A Grasp Metric Invariant Under Rigid Motions
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Minneapolis, MN, Apr. 22–28, pp.
2143
2148
.
10.
Hao
,
G.
, and
Kong
,
X.
,
2013
, “
A Normalization-Based Approach to the Mobility Analysis of Spatial Compliant Multi-Beam Modules
,”
Mech. Mach. Theory
,
59
, pp.
1
19
.
11.
Zhang
,
Y.
,
Su
,
H.-J.
, and
Liao
,
Q.
,
2014
, “
Mobility Criteria of Compliant Mechanisms Based on Decomposition of Compliance Matrices
,”
Mech. Mach. Theory
,
79
, pp.
80
93
.
12.
Chasles
,
M.
,
1830
, “
Note Sur Les Propriétés Générales du Système de Deux Corps Semblables Entr'eux et Placés D'une Manière Quelconque Dans L'espace; et Sur le Déplacement Fini ou Infiniment Petit D'un Corps Solide Libre
,” Bulletin des Sciences Mathématiques, Physiques et Chimiques, Vol. 14, pp.
321
326
.
13.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
14.
Onate
,
E.
,
1995
, “
On the Derivation and Possibilities of the Secant Stiffness Matrix for Non Linear Finite Element Analysis
,”
Comput. Mech.
,
15
(
6
), pp.
572
593
.
15.
Simo
,
J.
,
1992
, “
The (Symmetric) Hessian for Geometrically Nonlinear Models in Solid Mechanics: Intrinsic Definition and Geometric Interpretation
,”
Comput. Methods Appl. Mech. Eng.
,
96
(
2
), pp.
189
200
.
16.
Cottrell
,
J. A.
,
Hughes
,
T. J.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
Wiley
, Hoboken, NJ.
17.
Piegl
,
L.
, and
Tiller
,
W.
,
2012
,
The NURBS Book
,
Springer Science & Business Media
, Berlin.
18.
Jonker
,
J.
, and
Meijaard
,
J.
,
1990
, “
Spacar—Computer Program for Dynamic Analysis of Flexible Spatial Mechanisms and Manipulators
,”
Multibody Systems Handbook
,
Springer
, Berlin, pp.
123
143
.
You do not currently have access to this content.