Soft linear actuators (SLAs) such as shape memory alloy (SMA) wires, pneumatic soft actuators, dielectric elastomer actuator, and twisted and coiled soft actuator (TCA) called artificial muscle actuators in general, have many advantages over the conventional actuators. SLAs can realize innovative robotic technologies like soft robots, wearable robots, and bionic arms in the future, but further development is still needed in real applications because most SLAs do not provide large displacement or force as needed. This paper presents a novel mechanism supplementing SLAs by accumulating the displacement of multiple SLAs. It adopts the principle of differential gears in reverse. Since the input units of the mechanism are extensible, more displacement can be accumulated by increasing the number of the input units as many as needed. The mechanism is basically used to accumulate displacements, but can be used to accumulate forces by changing its operating mode. This paper introduces the design and working principle of the mechanism and validates its operation experimentally. In addition, the mechanism is implemented on a robotic arm and its effectiveness is confirmed.

References

References
1.
Defense Advanced Research Projects Agency (DARPA)
,
2015
, “
DARPA Robotics Challenge Finals
,” U. S. Government Agency, Arlington, VA, accessed Sept. 12, 2018, http://archive.darpa.mil/roboticschallenge/teams.html
2.
Stoppa
,
M. H.
,
Neto
,
G. F.
,
Rezende
,
S. M.
, and
Foggiatto
,
J. A.
,
2017
, “
Design and Development of a Bionic Hand Prosthesis
,”
International Conference on Applied Human Factors and Ergonomics (AHFE)
, Los Angeles, CA, July 17–21, pp.
518
528
.
3.
Seo
,
M.
,
Kim
,
H.
, and
Choi
,
Y.
,
2017
, “
Human Mimetic Forearm Mechanism Towards Bionic Arm
,”
International Conference on Rehabilitation Robitcs
(
ICORR
), London, UK, July 17–20, pp.
1171
1176
.https://zapdf.com/human-mimetic-forearm-mechanism-towards-bionic-arm.html
4.
Kovacs
,
G.
,
During
,
L.
,
Michel
,
S.
, and
Terrasi
,
G.
,
2009
, “
Stacked Dielectric Elastomer Actuator for Tensile Force Transmission
,”
Sens. Actuators, A
,
155
(
2
), pp.
299
307
.
5.
Cho
,
K. H.
,
Song
,
M. G.
,
Jung
,
H.
,
Park
,
J.
,
Moon
,
H.
,
Koo
,
J. C.
,
Nam
,
J. D.
, and
Choi
,
H. R.
,
2016
, “
A Robotic Finger Driven by Twisted and Coiled Polymer Actuator
,”
Proc. SPIE
,
9798
, pp.
1
7
.
6.
Nespoli
,
A.
,
Besseghini
,
S.
,
Pittaccio
,
S.
,
Villa
,
E.
, and
Viscuso
,
S.
,
2010
, “
The High Potential of Shape Memory Alloys in Developing Miniature Mechanical Devices: A Review on Shape Memory Alloy Mini-Actuators
,”
Sens. Actuators, A
,
158
(
1
), pp.
149
160
.
7.
Buchler
,
D.
,
Ott
,
H.
, and
Peters
,
J.
,
2016
, “
A Lightweight Robotic Arm With Pneumatic Muscles for Robot Learning
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
4086
4092
.
8.
Jung
,
H. S.
,
Yang
,
S. Y.
,
Cho
,
K. H.
,
Song
,
M. G.
,
Nguyen
,
C. T.
,
Phung
,
H.
,
Kim
,
U.
,
Moon
,
H.
,
Koo
,
J. C.
,
Nam
,
J.
, and
Choi
,
H. R.
,
2017
, “
Design and Fabrication of Twisted Monolithic Dielectric Elastomer Actuator
,”
Int. J. Control Autom. Syst.
,
15
(
1
), pp.
25
35
.
9.
Cho
,
K. H.
,
Song
,
M. G.
,
Yang
,
S. Y.
,
Kim
,
Y.
,
Jung
,
H.
,
Moon
,
H.
,
Koo
,
J. C.
,
Nam
,
J. D.
, and
Choi
,
H. R.
,
2017
, “
Super Stretchable Soft Actuator Made of Twisted and Coiled Spandex Fiber
,”
Proc. SPIE
,
10163
, pp.
1
6
.
10.
DYNALLOY, Inc.
,
2018
, “
Makers of Dynamic Alloys
,” DYNALLOY, Irvine, CA, accessed Sept. 12, 2018, http://www.dynalloy.com/pdfs/TCF1140.pdf
11.
Hawkes
,
E. W.
,
Christensen
,
D. L.
, and
Okamura
,
A. M.
,
2016
, “
Design and Implementation of a 300% Strain Soft Artificial Muscle
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
4022
4029
.
12.
Xie
,
S.
,
Mei
,
J.
,
Liu
,
H.
, and
Wang
,
P.
,
2017
, “
Motion Control of Pneumatic Muscle Actuator Using Fast Switching Valve
,”
ASIAN Conference on Mechanism and Machine Science (MMS) 2016 and International Conference on Mechanism and Machine Science (CCMMS)
, Guangzhou, China, Dec. 15–17, pp.
1439
1451
.
13.
Haines
,
C. S.
,
Lima
,
M. D.
,
Li
,
N.
,
Spinks
,
G. M.
,
Foroughi
,
J.
,
Madden
,
J. D. W.
,
Kim
,
S. H.
,
Fang
,
S.
,
Andrade
,
M. J.
,
Göktepe
,
F.
,
Göktepe
,
Ö.
,
Mirvakili
,
S. M.
,
Naficy
,
S.
,
Lepró
,
X.
,
Oh
,
J.
,
Kozlov
,
M. E.
,
Kim
,
S. J.
,
Xu
,
X.
,
Swedlove
,
B. J.
,
Wallace
,
G. G.
, and
Baughman
,
R. H.
,
2014
, “
Artificial Muscle From Fishing Line and Sewing Thread
,”
Science
,
343
(
6173
), pp.
868
872
.
14.
DYNALLOY, Inc.
,
2018
, “
Makers of Dynamic Alloys
,” DYNALLOY, Irvine, CA, accessed Sept. 12, 2018, http://www.dynalloy.com/tech_data_springs.php
15.
MIGA Motor Company
,
2018
, “
MIGA Motor
,” Miga Motor Company, Silverton, OR, accessed Sept. 12, 2018, http://www.migamotors.com
16.
Kim
,
H. M.
,
Suh
,
J. S.
,
Choi
,
Y. S.
,
Trong
,
T. D.
,
Moon
,
H.
,
Koo
,
J.
,
Ryew
,
S.
, and
Choi
,
H. R.
,
2013
, “
An in-Pipe Robot With Multi-Axial Differential Gear Mechanism
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
252
257
.
17.
Kim
,
H. M.
,
Choi
,
Y. S.
,
Lee
,
Y. G.
, and
Choi
,
H. R.
,
2017
, “
Novel Mechanism for in-Pipe Robot Based on a Multiaxial Differential Gear Mechanism
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
227
235
.
18.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2006
, “
Force Analysis of Connected Differential Mechanisms: Application to Grasping
,”
Int. J. Rob. Res.
,
25
(
10
), pp.
1033
1046
.
19.
Yang
,
S. U.
,
Kim
,
H. M.
,
Suh
,
J. S.
,
Choi
,
Y. S.
,
Mun
,
H. M.
,
Park
,
C. M.
,
Moon
,
H.
, and
Choi
,
H. R.
,
2014
, “
Novel Robot Mechanism Capable of 3D Differential Driving Inside Pipelines
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept. 14–18, pp.
1944
1949
.
You do not currently have access to this content.