Reconfiguration identification of a mechanism is essential in design and analysis of reconfigurable mechanisms. However, reconfiguration identification of a multiloop reconfigurable mechanism is still a challenge. This paper establishes the first- and second-order kinematic model in the queer-square mechanism to obtain the constraint system by using the sequential operation of the Lie bracket in a bilinear form. Introducing a bilinear form to reduce the complexity of first- and second-order constraints, the constraint system with first- and second-order kinematics of the queer-square mechanism is attained in a simplified form. By obtaining the solutions of the constraint system, six motion branches of the queer-square mechanism are identified and their corresponding geometric conditions are presented. Moreover, the initial configuration space of the mechanism is obtained.

References

References
1.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
2.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Liao
,
Q. Z.
,
2010
, “
Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1864
1876
.
3.
Dai
,
J. S.
, and
Gogu
,
G.
,
2016
, “
Editorial: Morphing, Metamorphosis and Reconfiguration Through Constraint Variations and Reconfigurable Joints
,”
Mech. Mach. Theory
,
96
, pp.
213
214
.
4.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
, (
ICRA'02
), Washington, DC, May 11–15, pp.
496
502
.
5.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
6
), pp.
743
761
.
6.
Ma
,
X. S.
,
Zhang
,
K. T.
, and
Dai
,
J. S.
,
2018
, “
Novel Spherical-Planar and Bennett-Spherical 6R Metamorphic Linkages With Reconfigurable Motion Branches
,”
Mech. Mach. Theory
,
128
, pp.
628
647
.
7.
Qin
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2014
, “
Multi-Furcation in a Derivative Queer-Square Mechanism
,”
Mech. Mach. Theory
,
81
, pp.
36
53
.
8.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,”
Recent Advances in Robot Kinematics
,
Springer
, Dordrecht, The Netherlands, pp.
359
368
.
9.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Configuration Transformations in Metamorphic Mechanisms of Foldable/Erectable Kinds
,” Tenth World Congress on the Theory of Machines and Mechanisms,
Oulu, Finland
, pp.
542
547
.
10.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2002
, “
Discontinuous Mobility of One Family of Spatial 6R Mechanisms Through the Group Algebraic Structure of Displacement Set
,”
ASME
Paper No. DETC2002/MECH-34273
.
11.
Galletti
,
C.
, and
Giannotti
,
E.
,
2002
, “
Multiloop Kinematotropic Mechanisms
,”
ASME
Paper No. DETC2002/MECH-34251
.
12.
Carroll
,
D. W.
,
Magleby
,
S. P.
,
Howell
,
L. H.
,
Todd
,
R. H.
, and
Lusk
,
C. P.
,
2005
, “
Simplified Manufacturing Through a Metamorphic Process for Compliant Ortho-Planar Mechanisms
,”
ASME
Paper No. IMECE2005-82093
.
13.
Yan
,
H. S.
, and
Kuo
,
C. H.
,
2006
, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
384
391
.
14.
Yan
,
H. S.
, and
Kang
,
C. H.
,
2009
, “
Configuration Synthesis of Mechanisms With Variable Topologies
,”
Mech. Mach. Theory
,
44
(
5
), pp.
896
911
.
15.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer
, Berlin.
16.
Gan
,
D.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2011
, “
Constraint-Based Limb Synthesis and Mobility-Change-Aimed Mechanism Construction
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051001
.
17.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2013
, “
Geometric Constraint and Mobility Variation of Two 3 SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.
18.
Malak
,
P. W.
,
Buchta
,
A. J.
, and
Voglewede
,
P. A.
,
2016
, “
Experimental Analysis of a Planar Reconfigurable Mechanism With a Variable Joint
,”
ASME
Paper No. DETC2016-59235
.
19.
Tian
,
H.
,
Ma
,
H.
, and
Ma
,
K.
,
2018
, “
Method for Configuration Synthesis of Metamorphic Mechanisms Based on Functional Analyses
,”
Mech. Mach. Theory
,
123
, pp.
27
39
.
20.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
21.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
22.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.
23.
Gan
,
W. W.
, and
Pellegrino
,
S.
,
2006
, “
Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
7
), pp.
1045
1056
.
24.
Kumar
,
P.
, and
Pellegrino
,
S.
,
2000
, “
Computation of Kinematic Paths and Bifurcation Points
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
7003
7027
.
25.
Kong
,
X.
,
2017
, “
Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051002
.
26.
Nurahmi
,
L.
,
Caro
,
S.
,
Wenger
,
P.
,
Schadlbauer
,
J.
, and
Husty
,
M.
,
2016
, “
Reconfiguration Analysis of a 4-RUU Parallel Manipulator
,”
Mech. Mach. Theory
,
96
, pp.
269
289
.
27.
Lerbet
,
J.
,
1998
, “
Analytic Geometry and Singularities of Mechanisms
,”
Z. Angew. Math. Mech.
,
78
(
10
), pp.
687
694
.
28.
Diez-Martínez
,
C. R.
,
Rico
,
J. M.
,
Cervantes-Sanchez
,
J. J.
, and
Gallardo
,
J.
,
2006
, “
Mobility and Connectivity in Multiloop Linkages
,”
Advances in Robot Kinematics
,
Springer
, Dordrecht,
The Netherlands
, pp.
455
464
.
29.
Rico
,
J. M.
,
Cervantes-Sanchez
,
J. J.
,
Tadeo
,
A.
,
Gallardo
,
J.
,
Aguilera
,
L. D.
, and
Diez-Martínez
,
C. R.
,
2009
, “
Infinitesimal Kinematics Methods in the Mobility Determination of Kinematic Chains
,”
ASME
Paper No. DETC2009-86489
.
30.
Rico
,
J. M.
, and
Duffy
,
J.
,
1996
, “
An Efficient Inverse Acceleration Analysis of In-Parallel Manipulators
,”
ASME
Paper No. DETC1996/MECH-1005
.
31.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Duffy
,
J.
,
1999
, “
Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains
,”
Mech. Mach. Theory
,
34
(
4
), pp.
559
586
.
32.
Alvarado
,
J. G.
,
1999
, “
Análisis Cinemáticos de Orden Superior de Cadenas Espaciales Mediante el Algebra de Tornillos y Sus Aplicaciones
,” Ph.D. dissertation, Tesis de doctorado, Instituto tecnológico de la Laguna, Torreón, Coah., Mexico.
33.
Müller
,
A.
,
2014
, “
Higher Derivatives of the Kinematic Mapping and Some Applications
,”
Mech. Mach. Theory
,
76
, pp.
70
85
.
34.
López-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes
,
J. J.
,
Pérez-Soto
,
G. I.
, and
Díez-Martínez
,
C. R.
,
2017
, “
Verification of the Higher Order Kinematic Analyses Equations
,”
Eur. J. Mech. A/Solids
,
61
, pp.
198
215
.
35.
Gogu
,
G.
,
2009
, “
Branching Singularities in Kinematotropic Parallel Mechanisms
,” Computational Kinematics (Proceedings of the 5th International Workshop on Computational Kinematics),
Springer-Verlag
,
Berlin
, pp.
341
348
.
36.
Dai
,
J. S.
,
2014
,
Geometrical Foundations and Screw Algebra for Mechanisms and Robotics
,
Higher Education Press
,
Beijing, China
.
37.
Gallardo
,
J.
,
Rico
,
J. M.
,
Frisoli
,
A.
,
Checcacci
,
D.
, and
Bergamasco
,
M.
,
2003
, “
Dynamics of Parallel Manipulators by Means of Screw Theory
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1113
1131
.
38.
Strang
,
G.
,
1976
,
Linear Algebra and Its Applications
,
Academic Press
,
New York
.
You do not currently have access to this content.