We propose a novel hybrid robot with seven degrees-of-freedom (DOF) and variable topology for operation in space. Design specifications of the space robot are presented for the type synthesis of hybrid mechanisms. Based on GF set theory, three design rules are given, thus providing the design method of the 7DOF hybrid space robot mechanism. Twenty-four combinations of the hybrid robotic mechanisms are obtained. The final synthesized configuration for the design of the space robot has a 3DOF parallel module and a 4DOF serial module with four revolute (RRRR) joints. The parallel module consists of a limb with universal-prismatic (UP) joints and two limbs with universal-prismatic-spherical (UPS) joints. The topology of the hybrid robot can be changed, and it will become an RPRR four-bar mechanism when it is folded for launch. The closed-form solution for the inverse displacement model is developed, and then the forward displacement equations are also obtained. After that, the Jacobian matrix is derived from the displacement model; the Jacobian matrix will analyze the singularity and workspace. We find that there are four singularities of mechanisms. The dexterous workspace of the hybrid robot is a good match for the grapple operation in space. An experiment with the prototype shows the present hybrid robot can grapple to a satellite-rocket docking ring and therefore validates the kinematic equations.

References

References
1.
Xu
,
W.
,
Liang
,
B.
,
Li
,
C.
, and
Xu
,
Y.
,
2010
, “
Autonomous Rendezvous and Robotic Capturing of Non-Cooperative Target in Space
,”
Robotica
,
28
(
5
), pp.
705
718
.
2.
Debus
,
T.
, and
Dougherty
,
S.
,
2009
, “
Overview and Performance of the Front-End Robotics Enabling Near-Term Demonstration (FREND) Robotic Arm
,”
AIAA
Paper No. 2009-1870.
3.
Landzettel
,
K.
,
Preusche
,
C.
, and
Schaffer
,
A.
,
2006
, “
Robotic On-Orbit Servicing—DLR's Experience and Perspective
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Beijing, China, Oct. 9–15, pp.
4587
4593
.
4.
Hirzinger
,
G.
,
Brunner
,
B.
,
Dietrich
,
J.
, and
Heindl
,
J.
,
1994
, “
Rotex—The First Remotely Controlled Robot in Space
,”
IEEE
International Conference on Robotics and Automation
, San Diego, CA, May 8–13, pp.
2604
2611
.
5.
Oda
,
M.
,
Kibe
,
K.
, and
Yamagata
,
F.
,
1996
, “
ETS-Vii, Space Robot in-Orbit Experiment Satellite
,”
IEEE
International Conference on Robotics and Automation
, Tokyo, Japan, June 11–13, pp.
739
744
.
6.
Ogilvie
,
A.
,
Allport
,
J.
,
Hannah
,
M.
, and
Lymer
,
J.
,
2008
, “
Autonomous Robotic Operations for On-Orbit Satellite Servicing
,”
Proc. SPIE
,
6958
, p.
695809
.
7.
Diftler
,
M. A.
,
Mehling
,
J. S.
,
Abdallah
,
M. E.
, and
Radford
,
N. A.
,
2011
, “
Robonaut 2—The First Humanoid Robot in Space
,”
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
2178
2183
.
8.
Reintsema
,
D.
,
Landzettel
,
K.
, and
Hirzinger
,
G.
,
2007
,
DLR's Advanced Telerobotic Concepts and Experiments for on-Orbit Servicing
,
Springer
,
Berlin
.
9.
Hirzinger
,
G.
,
Butterfab
,
J.
,
Fischer
,
M.
,
Grebenstein
,
M.
,
Hähnle
,
M.
,
Liu
,
H.
,
Schaefer
,
I.
, and
Sporer
,
N.
,
2000
, “
A Mechatronics Approach to the Design of Light-Weight Arms and Multifingered Hands
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 24–28, pp.
46
54
.
10.
Hirzinger
,
G.
,
Albu-Schäffer
,
A.
,
Hähnle
,
M.
,
Schaefer
,
I.
, and
Sporer
,
N.
,
2001
, “
On a New Generation of Torque Controlled Light-Weight Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, Korea, May 21–26, pp.
3356
3363
.
11.
Barnhart
,
D.
,
Sullivan
,
B.
,
Hunter
,
R.
,
Fowler
,
E.
, and
Hoag
,
L.
,
2013
, “
Phoenix Project Status 2013
,”
AIAA
Paper No. 2013-5341.
12.
Aghili
,
F.
,
2010
, “
A Reconfigurable Robot With Telescopic Links for In-Space Servicing
,”
AIAA
Paper No. 2010-8021.
13.
Chen
,
L.
,
Huang
,
P. F.
, and
Cai
,
J.
,
2016
, “
A Non-Cooperative Target Grasping Position Prediction Model for Tethered Space Robot
,”
Aerosp. Sci. Technol.
,
58
, pp.
571
581
.
14.
Yu
,
Z. W.
,
Liu
,
X. F.
, and
Cai
,
G. P.
,
2016
, “
Dynamics Modeling and Control of a 6-DOF Space Robot With Flexible Panels for Capturing a Free Floating Target
,”
Acta Astronaut.
,
128
, pp.
560
572
.
15.
Zhang
,
D.
, and
Gao
,
Z.
,
2012
, “
Forward Kinematics, Performance Analysis, and Multi-Objective Optimization of a Bio-Inspired Parallel Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
28
(
4
), pp.
484
492
.
16.
Coppola
,
G.
,
Zhang
,
D.
, and
Liu
,
K. F.
,
2014
, “
A 6-DOF Reconfigurable Hybrid Parallel Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
30
(
2
), pp.
99
106
.
17.
Terryn
,
W. C.
,
2011
,
Low Impact Docking System
,
Fer Publishing
, Saarbrücken, Germany.
18.
Chung
,
J.
,
Yi
,
B. J.
, and
Sung
,
O.
,
2009
, “
A Foldable 3-DOF Parallel Mechanism With Application to a Flat-Panel TV Mounting Device
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
1214
1221
.
19.
Pisla
,
D.
,
Szilaghyi
,
A.
, and
Vaida
,
C.
,
2013
, “
Kinematics and Workspace Modeling of a New Hybrid Robot Used in Minimally Invasive Surgery
,”
Rob. Comput.-Integr. Manuf.
,
29
(
2
), pp.
463
474
.
20.
Liu
,
H. T.
,
Huang
,
T.
, and
Mei
,
J. P.
,
2007
, “
Kinematic Design of a 5-DOF Hybrid Robot With Large Workspace/Limb-Stroke Ratio
,”
ASME J. Mech. Des.
,
129
(
5
), pp.
530
537
.
21.
Huang
,
Z.
, and
Li
,
Q. C.
,
2002
, “
General Methodology for Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
131
146
.
22.
Dai
,
J. S.
,
2006
, “
An Historical Review of the Theoretical Development of Rigid Body Displacements From Rodrigues Parameters to the Finite Twist
,”
Mech. Mach. Theory
,
41
(
1
), pp.
41
52
.
23.
Herve
,
J. M.
,
1999
, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
, pp.
719
730
.
24.
Meng
,
J.
,
Liu
,
G. F.
, and
Li
,
Z. X.
,
2007
, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DOF Parallel Manipulators
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
625
649
.
25.
Gogu
,
G.
,
2007
,
Structural Synthesis of Parallel Robots—Part 1: Methodology
,
Springer
,
New York
.
26.
Qi
,
Y.
,
Sun
,
T.
, and
Song
,
Y. M.
,
2017
, “ “
Type Synthesis of Parallel Tracking Mechanism With Varied Axes by Modeling Its Finite Motions Algebraically
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
054504
.
27.
Yang
,
S. F.
,
Sun
,
T.
,
Huang
,
T.
,
Li
,
Q. C.
, and
Gu
,
D. B.
,
2016
, “
A Finite Screw Approach to Type Synthesis of Three-DOF Translational Parallel Mechanisms
,”
Mech. Mach. Theory
,
104
, pp.
405
419
.
28.
Sun
,
T.
,
Yang
,
S. F.
,
Huang
,
T.
, and
Dai
,
J. S.
,
2017
, “
A Way of Relating Instantaneous and Finite Screws Based on the Screw Triangle Product
,”
Mech. Mach. Theory
,
108
, pp.
75
82
.
29.
Yang
,
S. F.
,
Sun
,
T.
, and
Huang
,
T.
,
2017
, “
Type Synthesis of Parallel Mechanisms Having 3T1R Motion With Variable Rotational Axis
,”
Mech. Mach. Theory
,
109
, pp.
220
230
.
30.
Gao
,
F.
, and
Yang
,
J. L.
,
2013
,
Topology Synthesis for Parallel Robotic Mechanisms
,
CAS Publications
,
Warsaw, Poland
.
31.
Gao
,
F.
,
Yang
,
J. L.
, and
Ge
,
Q. D.
,
2011
, “
Type Synthesis of Parallel Mechanisms Having the Second Class GF Sets and Two Dimensional Rotations
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011003
.
32.
Miao
,
Y. J.
,
Gao
,
F.
, and
Pan
,
D. L.
,
2014
, “
State Classification and Motion Description for the Lower Extremity Exoskeleton SJTU-EX
,”
J. Bionic Eng.
,
11
(
2
), pp.
249
258
.
33.
He
,
J.
,
Gao
,
F.
,
Meng
,
X. D.
, and
Guo
,
W. Z.
,
2015
, “
Type Synthesis for 4-DOF Parallel Press Mechanism Using GF Set Theory
,”
Chin. J. Mech. Eng.
,
28
(
4
), pp.
851
859
.
34.
He
,
J.
, and
Gao
,
F.
,
2015
, “
Type Synthesis for Bionic Quadruped Walking Robots
,”
J. Bonic Eng.
,
12
(
4
), pp.
527
538
.
35.
Gao
,
F.
,
Li
,
W. M.
, and
Zhao
,
X. C.
,
2002
, “
New Kinematic Structures for 2-, 3-, 4-, and 5-Dof Parallel Manipulator Designs
,”
Mech. Mach. Theory
,
37
(
11
), pp.
1395
1411
.
36.
Chen
,
G.
,
Zhang
,
L.
,
Jia
,
Q. X.
, and
Sun
,
H. X.
,
2014
, “
Singularity Analysis of Redundant Space Robot With the Structure of Canadarm
,”
Math. Prob. Eng.
,
2014
, p. 735030.
37.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME Trans. J. Appl. Mech.
,
22
(1), pp.
215
221
.
38.
Pieper
,
D.
,
1968
, “
The Kinematics of Manipulators Under Computer Control
,” Ph.D. thesis, Stanford University, San Francisco, CA.
39.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
40.
Merlet
,
J.-P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Rob. Res.
,
8
(
5
), pp.
45
56
.
41.
Gibson
,
C.
, and
Hunt
,
K.
,
1990
, “
Geometry of Screw Systems—Part 1: Screws: Genesis and Geometry
,”
Mech. Mach. Theory
,
25
(
1
), pp.
1
10
.
42.
Zlatanov
,
D.
,
Fenton
,
R.
, and
Benhabib
,
B.
,
1998
, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
,
33
(
6
), pp.
743
760
.
43.
Stoughton
,
R. S.
, and
Arai
,
T.
,
1993
, “
A Modified Stewart Platform Manipulator With Improved Dexterity
,”
IEEE Trans. Robot. Autom.
,
9
(
2
), pp.
166
173
.
44.
Angeles
,
C. S.
, and
López
,
C.
,
1992
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Rob. Res
,
11
(
6
), pp.
560
571
.
45.
Carretero
,
J. A.
,
Nahon
,
M. A.
, and
Podhorodeski
,
R. P.
,
2000
, “
Workspace Analysis and Optimization of a Novel 3-DOF Parallel Manipulator
,”
Int. J. Rob. Autom.
,
15
(
4
), pp.
178
188
.https://www.researchgate.net/publication/280044002_Workspace_analysis_and_optimization_of_a_novel_3-DOF_parallel_manipulator
46.
Pond
,
G.
, and
Carretero
,
J. A.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1505
1519
.
You do not currently have access to this content.