Understanding and analyzing large and nonlinear deflections are the major challenges of designing compliant mechanisms. Initially, curved beams can offer potential advantages to designers of compliant mechanisms and provide useful alternatives to initially straight beams. However, the literature on analysis and design using such beams is rather limited. This paper presents a general and accurate method for modeling large planar deflections of initially curved beams of uniform cross section, which can be easily adapted to curved beams of various shapes. This method discretizes a curved beam into a few elements and models each element as a circular-arc beam using the beam constraint model (BCM), which is termed as the chained BCM (CBCM). Two different discretization schemes are provided for the method, among which the equal discretization is suitable for circular-arc beams and the unequal discretization is for curved beams of other shapes. Compliant mechanisms utilizing initially curved beams of circular-arc, cosine and parabola shapes are modeled to demonstrate the effectiveness of CBCM for initially curved beams of various shapes. The method is also accurate enough to capture the relevant nonlinear load-deflection characteristics.

References

References
1.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
New York
.
2.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
3.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
4.
Kimball
,
C.
, and
Tsai
,
L. W.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
223
235
.
5.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexural Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
6.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
7.
Hao
,
G.
,
2015
, “
Extended Nonlinear Analytical Models of Compliant Parallelogram Mechanisms: Third-Order Models
,”
Trans. Can. Soc. Mech. Eng.
,
39
(
1
), pp.
71
83
.
8.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
9.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Bi-BCM: A Closed-Form Solution for Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
014501
.
10.
Chen
,
G.
, and
Bai
,
R.
,
2016
, “
Modeling Large Spatial Deflections of Slender Bisymmetric Beams in Compliant Mechanisms Using Chained Spatial-Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041011
.
11.
Dunning
,
A. G.
,
Tolou
,
N.
,
Pluimers
,
P. P.
,
Kluit
,
L. F.
, and
Herder
,
J. L.
,
2011
, “
Bistable Compliant Mechanisms: Corrected Finite Element Modeling for Stiffness Tuning and Preloading Incorporation
,”
ASME J. Mech. Des.
,
134
(
8
), p.
084502
.
12.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
,
2007
, “
Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1056
1063
.
13.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
Pseudo-Rigid-Body Models for Circular Beams Under Combined Tip Loads
,”
Mech. Mach. Theory
,
106
, pp.
80
93
.
14.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
15.
Gerson
,
Y.
,
Krylov
,
S.
,
Ilic
,
B.
, and
Schreiber
,
D.
,
2008
, “
Large Displacement Low Voltage Multistable Micro Actuator
,”
IEEE 21st International Conference on Micro Electro Mechanical Systems
(
MEMS
), Wuhan, China, Jan. 13–17, pp. 463–466.
16.
Han
,
J. S.
,
Muller
,
C.
,
Wallrabe
,
U.
, and
Korvink
,
J. G.
,
2007
, “
Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism With X- and Y-Directional Bistable Curved Beams
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1198
1203
.
17.
Oh
,
Y. S.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021002
.
18.
Sönmez
,
Ü.
,
2007
, “
Introduction to Compliant Long Dwell Mechanism Designs Using Buckling Beams and Arcs
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
831
843
.
19.
Prakashah
,
H. N.
, and
Zhou
,
H.
,
2016
, “
Synthesis of Constant Torque Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064503
.
20.
Wu
,
Y. S.
, and
Lan
,
C. C.
,
2014
, “
Linear Variable-Stiffness Mechanisms Based on Preloaded Curved Beams
,”
ASME J. Mech. Des.
,
136
(
12
), p.
122302
.
21.
Ahuett-Garza
,
H.
,
Chaides
,
O.
,
Garcia
,
P. N.
, and
Urbina
,
P.
,
2014
, “
Studies About the Use of Semicircular Beams as Hinges in Large Deflection Planar Compliant Mechanisms
,”
Precis. Eng.
,
38
(
4
), pp.
711
727
.
22.
Wang
,
N.
,
Zhang
,
Z.
,
Zhang
,
X.
, and
Cui
,
C.
,
2018
, “
Optimization of a 2-DOF Micro-Positioning Stage Using Corrugated Flexural Units
,”
Mech. Mach. Theory
,
121
, pp.
683
696
.
23.
Pham
,
H. T.
, and
Wang
,
D. A.
,
2011
, “
A Constant-Force Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory
,
46
(
7
), pp.
899
909
.
24.
Lan
,
C. C.
, and
Cheng
,
Y. J.
,
2008
, “
Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072304
.
25.
Howell
,
L. L.
, and
Midha
,
A.
,
1996
, “
Parametric Deflection Approximations for Initially Curved, Large-Deflection Beams in Compliant Mechanisms
,”
ASME
Paper No. 96-DETC/MECH-1215.
26.
Edwards
,
B. T.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2001
, “
A Pseudo-Rigid-Body Model for Initially-Curved Pinned-Pinned Segments Used in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
464
472
.
27.
Wang
,
N.
,
Liang
,
X.
, and
Zhang
,
X.
,
2014
, “
Pseudo-Rigid-Body Model for Corrugated Cantilever Beam Used in Compliant Mechanisms
,”
Chin. J. Mech. Eng.
,
27
(
1
), pp.
122
129
.
28.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2017
, “
Pseudo-Rigid-Body Models of Initially-Curved and Straight Beams for Designing Compliant Mechanisms
,”
ASME
Paper No. DETC2017-67431.
29.
Belfiore
,
N. P.
, and
Simeone
,
P.
,
2013
, “
Inverse Kinetostatic Analysis of Compliant Four-Bar Linkages
,”
Mech. Mach. Theory
,
69
, pp.
350
372
.
30.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexurals: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.
31.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexurals: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
32.
Lan
,
C. C.
, and
Lee
,
K. M.
,
2006
, “
Generalized Shooting Method for Analyzing Compliant Mechanisms With Curved Members
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
765
775
.
33.
Shvartsman
,
B. S.
,
2013
, “
Analysis of Large Deflections of a Curved Cantilever Subjected to a Tip-Concentrated Follower Force
,”
Int. J. Non-Linear Mech.
,
50
, pp.
75
80
.
You do not currently have access to this content.