This paper introduces the design of a specific landing gear retraction system presenting a mechanism with four redundant side stays and examines its dynamic behavior during the folding and unfolding processes. First, a concept design of a four-side-stay landing gear retraction system is presented. To get the particular motion during folding and unfolding, the main kinematics parameters are given. Then, the influence of the side stay's kinematic redundancy on the mechanism parameters is examined. Because the mechanism is overconstrained, the allowable parameters belong to a specific region of the space called feasible region. Finally, a dynamic analysis of the over-constrained system is executed by using the Newton–Euler approach and compliant equations. Numerical simulations indicate that this kind of landing gear retraction system equitably share the loads between different side stays, and therefore, the total load at one side stay is greatly reduced.

References

References
1.
Minshall
,
R.
,
1932
, “
Retractable Landing Gear
,” Boeing Co, Chicago, IL, U.S. Patent No.
US1874570A
.https://patents.google.com/patent/US1874570
2.
Armstrong
,
W.
,
1932
, “
Aircraft Landing Gear
,” Armstrong Whitworth Co., Newcastle upon Tyne, UK, U.S. Patent No.
GB365364
.
3.
Dowty
,
H.
,
1936
, “
Improvements Relating to Retractable Undercarriages for Aircraft
,” U.S. Patent No. GB45187.
4.
Robert
,
R.
,
1945
, “
Retractable Landing Gear for Aircraft
,” U.S. Patent No.
US2589434
.https://patents.google.com/patent/US2589434A/en
5.
Lucien
,
R.
,
1955
, “
Retractable Aircraft Landing Gear
,” Society for Industrial and Applied Mathematics, Philadelphia, PA, U.S. Patent No.
US2859006
.https://patents.google.com/patent/US2859006
6.
Bendix Corporation
,
1964
, “
Aircraft Landing Gear
,” U.S. Patent No. GB1067088.
7.
United Aircraft Corporation
,
1970
, “
Aircraft Landing Gear
,” U.S. Patent No. GB1215552.
8.
Aerostar
,
S. A. B.
,
2012
, “
Jamba principal pentru trenul de aterizare al aeronavei
,” U.S. Patent No. RO201100035.
9.
Bell Helicopter Textron Inc.
,
2014
, “
Retractable Aircraft Landing Gear
,” Bell Helicopter Textron Inc., Fort Worth, TX, U.S. Patent No.
EP2708464A1
.https://patents.google.com/patent/EP2708464A1/en
10.
Sagem Defense Securite
,
2015
, “
Aircraft Comprising a Retractable Arm Equipped With an Obstacle Detector
,” Messier-Bugatti-Dowty, Vélizy-Villacoublay, France, U.S. Patent No.
WO2015158892A1
.https://patents.google.com/patent/WO2015158892A1/en
11.
Currey
,
N.
,
1988
,
Aircraft Landing Gear Design: Principle and Practice
,
AIAA
,
Washington, DC
.
12.
Conway
,
H.
,
1958
,
Landing Gear Design
,
Chapman and Hall
,
London
, pp.
175
195
.
13.
Veaux
,
J.
,
1986
, “
New Design Procedures Applied to Landing Gear Development
,”
J. Aircr.
,
25
(
10
), pp.
904
910
.
14.
Daniels
,
J.
,
1996
, “
A Method for Landing Gear Modeling and Simulation With Experimental Validation
,” National Aeronautics and Space Administration, Hampton, VA, Technical Report No.
NASA/TM-1996-201601 NCC1-208
.https://ntrs.nasa.gov/search.jsp?R=19960049759
15.
Hac
,
M.
, and
From
,
K.
,
2008
, “
Design of Retraction Mechanism of Aircraft Landing Gear
,”
J. Mech. Mech. Eng.
,
12
(
4
), pp.
357
373
.http://kdm.p.lodz.pl/articles/2008/V12_04_07_hac_from_mme.pdf
16.
Sadraey
,
M.
,
2012
, “
Landing Gear Design
,”
Aircraft Design: A System Engineering Approach
,
Wiley
, New York, pp.
479
544
.
17.
Rajesh
,
A.
, and
Abhay
,
B.
,
2015
, “
Design and Analysis Aircraft Nose and Nose Landing Gear
,”
J. Aeronaut. Aerosp. Eng.
,
4
(
2
), pp.
74
78
.
18.
Knowles
,
J.
,
Krauskopf
,
B.
, and
Lowenberg
,
M.
,
2014
, “
Numerical Continuation Analysis of a Dual-Sidestay Main Landing Gear Mechanism
,”
J. Aircr.
,
51
(
1
), pp.
129
143
.
19.
Luo
,
H.
, and
Zhao
,
J.
,
2018
, “
Synthesis and Kinematics of a Double-Lock Overconstrained Landing Gear Mechanism
,”
J. Mech. Mach. Theory
,
121
, pp.
245
258
.
20.
Nolle
,
H.
,
1974
, “
Linkage Coupler Curve Synthesis: A Historical Review—I: Developments Up to 1875
,”
Mech. Mach. Theory
,
9
(
2
), pp.
147
168
.
21.
Garcia
,
J.
, and
Gutierrez-Lopez
,
M.
,
2013
, “
Multibody Dynamics With Redundant Constraints and Singular Mass Matrix: Existence, Uniqueness, and Determination of Solutions for Accelerations and Constraint Forces
,”
Multibody Syst. Dyn.
,
30
(
3
), pp.
311
341
.
22.
Wojtyra
,
M.
, and
Fraczek
,
J.
,
2013
, “
Comparison of Selected Methods of Handling Redundant Constraints in Multibody Systems Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021007
.
23.
Wojtyra
,
M.
,
2009
, “
Joint Reactions in Rigid Body Mechanisms With Dependent Constraints
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2265
2278
.
24.
Udwadia
,
F.
, and
Kalaba
,
R.
,
1996
,
Analytical Dynamics: A New Approach
,
Cambridge University Press
,
Cambridge, UK
.
25.
Callejo
,
A.
,
Gholami
,
F.
,
Enzenhofer
,
A.
, and
Kovecses
,
J.
,
2017
, “
Unique Minimum Norm Solution to Redundant Reaction Forces in Multibody Systems
,”
Mech. Mach. Theory
,
116
, pp.
310
325
.
26.
Gonzalez
,
F.
, and
Kovecses
,
J.
,
2013
, “
Use of Penalty Formulations in Dynamic Simulation and Analysis of Redundantly Constrained Multibody Systems
,”
Multibody Syst. Dyn.
,
29
(
1
), pp.
57
76
.
27.
Zhao
,
J.
,
Li
,
L.
,
Chen
,
L.
, and
Zhang
,
Y.
,
2010
, “
The Concept Design and Dynamics Analysis of a Novel Vehicle Suspension Mechanism With Invariable Orientation Parameters
,”
J. Veh. Syst. Dyn.
,
48
(
12
), pp.
1495
1510
.
28.
Meng
,
J.
,
Zhang
,
D.
, and
Li
,
Z.
,
2009
, “
Accuracy Analysis of Parallel Manipulators With Joint Clearance
,”
ASME J. Mech. Des.
,
131
(
1
), p.
001013
.
You do not currently have access to this content.