Needles are widely used in medicine for minimally invasive procedures. A steerable flexible needle was first introduced about 15 years ago, which was a new type of needle and could follow three-dimensional curved trajectory during medical procedures. The flexible needle has the limit of a single and low curvature. In this paper, we overcome this limit by designing mechanisms for tube-wire type flexible needles. We also provide a systematic planning method for an automated operation of the needle insertion using the mechanisms. Using the new system, we can achieve high and multiple curvatures from needle trajectories. The proposed design consists of an inner prebent wire and an outer tube, which are connected to two special mechanisms, an extension switch and a friction cart. It allows the trajectory of the needle to have high and multiple curvatures, which will enable the needle to easily reach target positions while efficiently avoiding obstacles. Users can efficiently control the needle device with simple inputs (insertion and rotation) using the special operation mechanism, which achieves three system functions (insertion/retraction, rotation, curvature changes) using only two actuation motors. Compared to prebent needles or duty-cycled spinning, this needle design causes less tissue damage. We build an automatic system to operate the new design of the steerable needle and test it. The performance of the new needle is verified by experiments with ballistic gelatin and animal tissue samples.

References

References
1.
Park
,
W.
,
Kim
,
J.
,
Zhou
,
Y.
,
Cowan
,
N.
,
Okamura
,
A.
, and
Chirikjian
,
G.
,
2005
, “
Diffusion-Based Motion Planning for a Nonholonomic Flexible Needle Model
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
4600
4605
.
2.
Webster
,
R. J.
, III
,
Kim
,
J. S.
,
Cowan
,
N. J.
,
Chirikjian
,
G. S.
, and
Okamura
,
A. M.
,
2006
, “
Nonholonomic Modeling of Needle Steering
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
509
525
.
3.
Park
,
W.
,
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2010
, “
The Path-of-Probability Algorithm for Steering and Feedback Control of Flexible Needles
,”
Int. J. Rob. Res.
,
29
(
7
), pp.
813
830
.
4.
Duindam
,
V.
,
Xu
,
J.
,
Alterovitz
,
R.
,
Sastry
,
S.
, and
Goldberg
,
K.
,
2010
, “
Three-Dimensional Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics
,”
Int. J. Rob. Res.
,
29
(
7
), pp.
789
800
.
5.
Xu
,
J.
,
Duindam
,
V.
,
Alterovitz
,
R.
,
Pouliot
,
J.
,
Cunha
,
J. A. M.
,
Hsu
,
I.
, and
Goldberg
,
K.
,
2009
, “
Planning Fireworks Trajectories for Steerable Medical Needles to Reduce Patient Trauma
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), St. Louis, MO, Oct. 10–15, pp.
4517
4522
.
6.
Duindam
,
V.
,
Alterovitz
,
R.
,
Sastry
,
S.
, and
Goldberg
,
K.
,
2008
, “
Screw-Based Motion Planning for Bevel-Tip Flexible Needles in 3D Environments With Obstacles
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Pasadena, CA, May. 19–23, pp.
2483
2488
.
7.
Van Den Berg
,
J.
,
Patil
,
S.
,
Alterovitz
,
R.
,
Abbeel
,
P.
, and
Goldberg
,
K.
,
2011
, “
LQG-Based Planning, Sensing, and Control of Steerable Needles
,”
Algorithmic Foundations of Robotics IX
,
Hsu
,
D.
,
Isler
,
V.
,
Latombe
,
J. C.
,
Lin
,
M. C.
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
373
389
.
8.
Asadian
,
A.
,
Kermani
,
M. R.
, and
Patel
,
R. V.
,
2011
, “
Robot-Assisted Needle Steering Using a Control Theoretic Approach
,”
J. Intell. Rob. Syst.
,
62
(
3–4
), pp.
397
418
.
9.
Hauser
,
K.
,
Alterovitz
,
R.
,
Chentanez
,
N.
,
Okamura
,
A.
, and
Goldberg
,
K.
,
2009
, “
Feedback Control for Steering Needles Through 3D Deformable Tissue Using Helical Paths
,”
Robotics Science and Systems: Online Proceedings
, Vol.
37
.
10.
Kallem
,
V.
, and
Cowan
,
N. J.
,
2009
, “
Image Guidance of Flexible Tip-Steerable Needles
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
191
196
.
11.
Glozman
,
D.
, and
Shoham
,
M.
,
2007
, “
Image-Guided Robotic Flexible Needle Steering
,”
IEEE Trans. Rob.
,
23
(
3
), pp.
459
467
.
12.
Neubach
,
Z.
, and
Shoham
,
M.
,
2010
, “
Ultrasound-Guided Robot for Flexible Needle Steering
,”
IEEE Trans. Biomed. Eng.
,
57
(
4
), pp.
799
805
.
13.
Abayazid
,
M.
,
Moreira
,
P.
,
Shahriari
,
N.
,
Patil
,
S.
,
Alterovitz
,
R.
, and
Misra
,
S.
,
2014
, “
Ultrasound-Guided Three-Dimensional Needle Steering in Biological Tissue With Curved Surfaces
,”
Med. Eng. Phys.
,
37
(
1
), pp.
145
150
.
14.
Adebar
,
T. K.
,
Fletcher
,
A. E.
, and
Okamura
,
A. M.
,
2014
, “
3D Ultrasound-Guided Robotic Needle Steering in Biological Tissue
,”
IEEE Trans. Biomed. Eng.
,
61
(
12
), pp.
2899
2910
.
15.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K.
, and
Okamura
,
A. M.
,
2010
, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1640
1660
.
16.
Webster
,
R. J.
,
Memisevic
,
J.
, and
Okamura
,
A. M.
,
2005
, “
Design Considerations for Robotic Needle Steering
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
3588
3594
.
17.
Alterovitz
,
R.
,
Goldberg
,
K.
, and
Okamura
,
A.
,
2005
, “
Planning for Steerable Bevel-Tip Needle Insertion Through 2D Soft Tissue With Obstacles
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
1640
1645
.
18.
Lee
,
J.
, and
Park
,
W.
,
2013
, “
Insertion Planning for Steerable Flexible Needles Reaching Multiple Planar Targets
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
2377
2383
.
19.
Wedlick
,
T. R.
, and
Okamura
,
A. M.
,
2009
, “
Characterization of Pre-Curved Needles for Steering in Tissue
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Minneapolis, MN, Nov. 13 pp.
1200
1203
.
20.
Minhas
,
D. S.
,
Engh
,
J. A.
,
Fenske
,
M. M.
, and
Riviere
,
C. N.
,
2007
, “
Modeling of Needle Steering Via Duty-Cycled Spinning
,”
IEEE Engineering in Medicine and Biology Society
(
EMBS
), Lyon, France, Aug. 22–26, pp.
2756
2759
.
21.
Swaney
,
P. J.
,
Burgner
,
J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2013
, “
A Flexure-Based Steerable Needle: High Curvature With Reduced Tissue Damage
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
906
909
.
22.
Okazawa
,
S.
,
Ebrahimi
,
R.
,
Chuang
,
J.
,
Salcudean
,
S. E.
, and
Rohling
,
R.
,
2005
, “
Hand-Held Steerable Needle Device
,”
IEEE/ASME Trans. Mechatronics
,
10
(
3
), pp.
285
296
.
23.
Ko
,
S. Y.
,
Davies
,
B. L.
, and
Rodriguez y Baena
,
F.
,
2010
, “
Two-Dimensional Needle Steering With a Programmable Bevel Inspired by Nature: Modeling Preliminaries
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
2319
2324
.
24.
Ko
,
S. Y.
, and
y Baena
,
F. R.
,
2013
, “
Toward a Miniaturized Needle Steering System With Path Planning for Obstacle Avoidance
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
910
917
.
25.
Ayvali
,
E.
,
Ho
,
M.
, and
Desai
,
J. P.
,
2014
, “
A Novel Discretely Actuated Steerable Probe for Percutaneous Procedures
,”
Experimental Robotics
,
Springer
, Berlin, Heidelberg, pp.
115
123
.
26.
Ayvali
,
E.
,
Liang
,
C.-P.
,
Ho
,
M.
,
Chen
,
Y.
, and
Desai
,
J. P.
,
2012
, “
Towards a Discretely Actuated Steerable Cannula for Diagnostic and Therapeutic Procedures
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
588
603
.
27.
Shahriari
,
N.
,
Roesthuis
,
R. J.
,
van de Berg
,
N. J.
,
van den Dobbelsteen
,
J. J.
, and
Misra
,
S.
,
2016
, “
Steering an Actuated-Tip Needle in Biological Tissue: Fusing fbg-Sensor Data and Ultrasound Images
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
4443
4449
.
28.
Bui
,
V. K.
,
Park
,
S.
,
Park
,
J. O.
, and
Ko
,
S. Y.
,
2016
, “
A Novel Curvature-Controllable Steerable Needle for Percutaneous Intervention
,”
Proc. Inst. Mech. Eng., J. Eng. Med.
,
230
(
8
), pp.
727
738
.
29.
Reed
,
K. B.
,
Majewicz
,
A.
,
Kallem
,
V.
,
Alterovitz
,
R.
,
Goldberg
,
K.
,
Cowan
,
N. J.
, and
Okamura
,
A. M.
,
2011
, “
Robot-Assisted Needle Steering
,”
IEEE Rob. Autom. Mag.
,
18
(
4
), pp.
35
46
.
30.
Abayazid
,
M.
,
Pacchierotti
,
C.
,
Moreira
,
P.
,
Alterovitz
,
R.
,
Prattichizzo
,
D.
, and
Misra
,
S.
,
2015
, “
Experimental Evaluation of Co-Manipulated Ultrasound-Guided Flexible Needle Steering
,”
Int. J. Medical Rob.
, 12(2), pp. 219–230.
31.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K.
, and
Okamura
,
A. M.
,
2009
, “
Observations and Models for Needle-Tissue Interactions
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Minneapolis, MN, Sept. 3–6, pp.
2687
2692
.
32.
Park
,
W.
,
Reed
,
K. B.
,
Okamura
,
A. M.
, and
Chirikjian
,
G. S.
,
2010
, “
Estimation of Model Parameters for Steerable Needles
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
3703
3708
.
33.
Reed
,
K. B.
,
Kallem
,
V.
,
Alterovitz
,
R.
,
Goldbergxz
,
K.
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2008
, “
Integrated Planning and Image-Guided Control for Planar Needle Steering
,”
2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Scottsdale, AZ, Oct. 19–22, pp.
819
824
.
You do not currently have access to this content.