This paper presents a cooperative robot exploration (CRE) strategy that is based on the sensor-based random tree (SRT) star method. The CRE strategy is utilized for a team of mobile robots equipped with range finding sensors. Existing backtracking techniques for frontier-based (FB) exploration involve moving back thorough the previous position where the robot has passed before. However, in some cases, the robot generates inefficient detours to move back to the position that contains frontier areas. In an effort to improve upon movement and energy efficiencies, this paper proposes the use of a hub node that has a frontier arc; thereby, the robots backtrack more directly to hub nodes by using the objective function. Furthermore, each robot cooperatively explores the workspace utilizing the data structure from the entire team of robots, which consists of configuration data and frontier data. Comparative simulations of the proposed algorithm and the existing SRT-star algorithm are implemented and described. The experiment is presented to demonstrate the application of the proposed strategy in real-time. Utilizing the proposed algorithm and exploration strategy, the results indicate that a team of robots can work more efficiently by reducing the distance of exploration and the number of node visited.

References

References
1.
Palmieri
,
L.
, and
Arras
,
K. O.
,
2014
, “
A Novel Rrt Extend Function for Efficient and Smooth Mobile Robot Motion Planning
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept. 14–18, pp.
205
211
.
2.
Bennet
,
D. J.
, and
McInnes
,
C. R.
,
2010
, “
Distributed Control of Multi-Robot Systems Using Bifurcating Potential Fields
,”
Rob. Auton. Syst.
,
58
(
3
), pp.
256
264
.
3.
Heidari
,
F.
, and
Fotouhi
,
R.
,
2015
, “
A Human-Inspired Method for Point-to-Point and Path-Following Navigation of Mobile Robots
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041025
.
4.
Menon
,
M. S.
,
Ravi
,
V.
, and
Ghosal
,
A.
,
2017
, “
Trajectory Planning and Obstacle Avoidance for Hyper-Redundant Serial Robots
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041010
.
5.
Latombe
,
J.-C.
,
2012
,
Robot Motion Planning
, Kluwer Academic Publishers, Norwell, MA.
6.
Koren
,
Y.
, and
Borenstein
,
J.
,
1991
, “
Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Sacramento, CA, Apr. 9–11, pp.
1398
1404
.
7.
Choset
,
H.
, and
Burdick
,
J.
,
2000
, “
Sensor-Based Exploration: The Hierarchical Generalized Voronoi Graph
,”
Int. J. Rob. Res.
,
19
(
2
), pp.
96
125
.
8.
Hart
,
P. E.
,
Nilsson
,
N. J.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybern.
,
4
(
2
), pp.
100
107
.
9.
Thrun
,
S.
,
Burgard
,
W.
, and
Fox
,
D.
,
2005
,
Probabilistic Robotics
,
MIT Press
, Cambridge, MA.
10.
Yamauchi
,
B.
,
1997
, “
A Frontier-Based Approach for Autonomous Exploration
,”
IEEE International Symposium on Computational Intelligence in Robotics and Automation
(
CIRA
), Monterey, CA, July 10–11, pp.
146
151
.
11.
Yamauchi
,
B.
,
Schultz
,
A.
, and
Adams
,
W.
,
1998
, “
Mobile Robot Exploration and Map-Building With Continuous Localization
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Leuven, Belgium, May 20, pp.
3715
3720.
12.
González-Banos
,
H. H.
, and
Latombe
,
J.-C.
,
2002
, “
Navigation Strategies for Exploring Indoor Environments
,”
Int. J. Rob. Res.
,
21
(
10
), pp.
829
848
.
13.
Basilico
,
N.
, and
Amigoni
,
F.
,
2011
, “
Exploration Strategies Based on Multi-Criteria Decision Making for Searching Environments in Rescue Operations
,”
Auton. Rob.
,
31
(
4
), p.
401
.
14.
Oriolo
,
G.
,
Vendittelli
,
M.
,
Freda
,
L.
, and
Troso
,
G.
,
2004
, “
The Srt Method: Randomized Strategies for Exploration
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), New Orleans, LA, Apr. 26–May. 1, pp.
4688
4694
.
15.
LaValle
,
S. M.
, and
Kuffner
,
J. J.
, Jr
,
2000
, “
Rapidly-Exploring Random Trees: Progress and Prospects
,” New Directions in Algorithmic and Computational Robotics, A K Peters, Natick, MA, pp. 293–308.
16.
Albers
,
S.
,
Kursawe
,
K.
, and
Schuierer
,
S.
,
2002
, “
Exploring Unknown Environments With Obstacles
,”
Algorithmica
,
32
(
1
), pp.
123
143
.
17.
Lee
,
D.
, and
Recce
,
M.
,
1997
, “
Quantitative Evaluation of the Exploration Strategies of a Mobile Robot
,”
Int. J. Rob. Res.
,
16
(
4
), pp.
413
447
.
18.
Lumelsky
,
V. J.
,
Mukhopadhyay
,
S.
, and
Sun
,
K.
,
1990
, “
Dynamic Path Planning in Sensor-Based Terrain Acquisition
,”
IEEE Trans. Rob. Autom.
,
6
(
4
), pp.
462
472
.
19.
Kim
,
J.
,
Seong
,
K. J.
, and
Kim
,
H. J.
,
2012
, “
An Efficient Backtracking Strategy for Frontier Method in Sensor-Based Random Tree
,”
12th International Conference on Control, Automation and Systems
(
ICCAS
), JeJu Island, South Korea, Oct. 17–21, pp.
970
974
.https://ieeexplore.ieee.org/document/6393365/
20.
Cao
,
Y. U.
,
Fukunaga
,
A. S.
, and
Kahng
,
A.
,
1997
, “
Cooperative Mobile Robotics: Antecedents and Directions
,”
Auton. Rob.
,
4
(
1
), pp.
7
27
.
21.
Fox
,
D.
,
Burgard
,
W.
,
Kruppa
,
H.
, and
Thrun
,
S.
,
1999
, “
Collaborative Multi-Robot Localization
,”
Mustererkennung 1999
,
Springer
, Berlin, Germany, pp.
15
26
.
22.
Chang
,
H. J.
,
Lee
,
C. G.
,
Hu
,
Y. C.
, and
Lu
,
Y.-H.
,
2007
, “
Multi-Robot Slam With Topological/Metric Maps
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Diego, CA, Oct. 29–Nov.2 pp.
1467
1472
.
23.
Franchi
,
A.
,
Freda
,
L.
,
Oriolo
,
G.
, and
Vendittelli
,
M.
,
2009
, “
The Sensor-Based Random Graph Method for Cooperative Robot Exploration
,”
IEEE/ASME Trans. Mechatronics
,
14
(
2
), pp.
163
175
.
You do not currently have access to this content.