During extraterrestrial planetary exploration programs, autonomous robots are deployed using a separate immovable lander and rover. This mode has some limitations. In this paper, a concept of a novel legged robot with decoupled functions was introduced that has inbuilt features of a lander and rover. Currently, studies have focused mainly on performance analysis of the lander without a walking function. However, a systematic type synthesis of the legged mobile lander has not been studied. In this paper, a new approach to the type synthesis used for the robot was proposed based on the Lie group theory. The overall concept and design procedure were proposed and described. The motion requirements of the robot and its legs were extracted and described intuitively. The layouts of the subgroups or submanifolds of the limbs were determined. A family of particular joints with one rotation and one translation was proposed for the first time. The structures of the limbs were synthesized. Numerous structures of the legs were produced and listed corresponding to the desired displacement manifolds. Numerous novel structures of the legs for legged mobile lander were evaluated and listed. Then, four qualitative criteria were introduced. Based on the proposed criteria, a particular case of legs' configuration with a rhombus joint was selected as the best one among them. A typical structure of the legged mobile lander was obtained by assembling the structures of the proposed legs with a rhombus joint. Finally, the typical robot was used as an example to verify the capabilities of the novel robot using a software simulation (adams).

References

References
1.
Donahue
,
B. B.
,
Caplin
,
G.
,
Smith
,
D. B.
,
Behrens
,
J. W.
, and
Maulsby
,
C.
,
2008
, “
Lunar Lander Concepts for Human Exploration
,”
J. Spacecr. Rockets
,
45
(
2
), pp.
383
393
.
2.
Hapke
,
B.
,
1967
, “
Surveyor I and Luna IX Pictures and the Lunar Soil
,”
Icarus
,
6
(
1–3
), pp.
254
269
.
3.
Williams
,
R. J.
, and
Gibson
,
E. K.
,
1972
, “
The Origin and Stability of Lunar Goethite, Hematite and Magnetite
,”
Earth Planet Sci. Lett.
,
17
(
1
), pp.
84
88
.
4.
Rogers
,
W. F.
,
1972
, “
Apollo Experience Report: Lunar Module Landing Gear Subsystem
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NASA TN D-7084
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730010174.pdf
5.
Parkinson
,
R.
,
1999
, “
The Use of System Models in the EuroMoon Spacecraft Design
,”
Acta Astronaut.
,
44
(
7–12
), pp.
437
443
.
6.
Okada
,
T.
,
Sasaki
,
S.
,
Sugihara
,
T.
,
Saiki
,
K.
,
Akiyama
,
H.
,
Ohtake
,
M.
,
Takeda
,
H.
,
Hasebe
,
N.
,
Kobayashi
,
M.
, and
Haruyama
,
J.
,
2006
, “
Lander and Rover Exploration on the Lunar Surface: A Study for SELENE-B Mission
,”
Adv. Space Res.
,
37
(
1
), pp.
88
92
.
7.
Prinzell
,
L. J.
, III
,
Kramer
,
L. J.
,
Norman
,
R. M.
,
Arthur
,
J. J.
, III
,
Williams
,
S. P.
,
Shelton
,
K. J.
, and
Bailey
,
R. E.
,
2009
, “
Synthetic and Enhanced Vision System for Altair Lunar Lander
,”
International Symposium on Aviation Psychology
, Dayton, OH, pp. 660–665https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=1108&context=isap_2009.
8.
Wu
,
W.
, and
Yu
,
D.
,
2014
, “
Key Technologies in the Chang'E-3 Soft-Landing Project
,”
J. Deep Space Explor.
,
1
, pp.
105
109
.
9.
He
,
P. J. L. Z. Z.
,
2008
, “
Conceptual Design of a Lunar Lander
,”
Spacecr. Eng.
,
17
(1), pp. 18–23.
10.
Ringrose
,
T.
,
Towner
,
M.
, and
Zarnecki
,
J.
,
2003
, “
Convective Vortices on Mars: A Reanalysis of Viking Lander 2 Meteorological Data, Sols 1–60
,”
Icarus
,
163
(
1
), pp.
78
87
.
11.
Heet
,
T. L.
,
Arvidson
,
R.
,
Cull
,
S.
,
Mellon
,
M.
, and
Seelos
,
K.
,
2009
, “
Geomorphic and Geologic Settings of the Phoenix Lander Mission Landing Site
,”
J. Geophys. Res.: Planets
,
114
(
E1
), p. E00E04.
12.
Munjulury
,
R. C.
,
Berry
,
P.
,
Coca
,
D. B.
,
Prat
,
A. P.
, and
Krus
,
P.
,
2017
, “
Analytical Weight Estimation of Landing Gear Designs
,”
Proc. Inst. Mech. Eng. Part G
,
231
(
12
), pp.
2214
2227
.
13.
Erturk
,
A.
,
Renno
,
J. M.
, and
Inman
,
D. J.
,
2009
, “
Modeling of Piezoelectric Energy Harvesting From an L-Shaped Beam-Mass Structure With an Application to UAVs
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
529
544
.
14.
Nagendran
,
A.
,
Crowther
,
W.
, and
Richardson
,
R.
,
2012
, “
Biologically Inspired Legs for UAV Perched Landing
,”
IEEE Aerosp. Electron. Syst. Mag.
,
27
(
2
), pp.
4
13
.
15.
Fiorini
,
P.
, and
Burdick
,
J.
,
2003
, “
The Development of Hopping Capabilities for Small Robots
,”
Auton. Robots
,
14
(
2/3
), pp.
239
254
.
16.
Iagnemma
,
K.
,
Shibly
,
H.
,
Rzepniewski
,
A.
,
Dubowsky
,
S.
, and
Territories
,
P.
,
2001
, “
Planning and Control Algorithms for Enhanced Rough-Terrain Rover Mobility
,”
International Symposium on Artificial Intelligence Robotics and Automation in Space
.
17.
Lindemann
,
R.
,
2006
, “
Mars Exploration Rover Mobility Development-Mechanical Mobility Hardware Design, Development, and Testing
,”
IEEE Rob. Autom. Mag.
,
13
(
2
), pp.
19
26
.
18.
Chuankai
,
L.
,
Baofeng
,
W.
, and
Jia
,
W.
,
2014
, “
Integrated INS and Vision Based Orientation Determination and Positioning of CE-3 Lunar Rover
,”
J. Spacec TT&C Tech.
,
33
(
3
), pp.
250
257
.
19.
Bertrand
,
R.
,
Lamon
,
P.
,
Michaud
,
S.
,
Schiele
,
A.
, and
Siegwart
,
R.
,
2003
, “
The SOLERO Rover for Regional Exploration of Planetary Surfaces
,” EGS-AGU-EUG Joint Assembly, Nice, France, Apr. 6–11.
20.
Estier
,
T.
,
Crausaz
,
Y.
,
Merminod
,
B.
,
Lauria
,
M.
,
Piguet
,
R.
, and
Siegwart
,
R.
,
2000
, “
An Innovative Space Rover With Extended Climbing Abilities
,”
Space Rob.
,
36
, pp.
333
339
.http://cedb.asce.org/cgi/WWWdisplay.cgi?120331
21.
Baglioni
,
P.
,
Elfving
,
A.
, and
Ravera
,
F.
,
2008
, “
The ExoMars Rover—Overview of Phase B1 Results
,” Ninth International Symposium on Artificial Intelligence, Robotics and Automation in Space, Los Angeles, CA.
22.
Wilcox
,
B. H.
,
2007
, “
ATHLETE: A Mobility and Manipulation System for the Moon
,”
IEEE
Aerospace Conference
, Big Sky, MT, Mar. 3–10, pp.
1
10
.
23.
Wilcox
,
B. H.
,
2008
, “
ATHLETE: An Option for Mobile Lunar Landers
,”
IEEE
Aerospace Conference
, Big Sky, MT, Mar. 1–8, pp.
1
8
.
24.
D
,
L.
,
Raptis
,
I. A.
, and
Price
,
J.
,
2014
, “
Design and Validation of a Centimeter-Scale Robot Collective
,”
IEEE International Conference on Systems, Man and Cybernetics
(
SMC
), San Diego, CA, Oct. 5–8, pp.
918
923
.
25.
Liang
,
L.
,
Zhang
,
Z.
,
Guo
,
L.
,
Yang
,
C.
,
Zeng
,
Y.
,
Min
,
L. I.
, and
Peijian
,
Y. E.
,
2015
, “
Task Analysis of Mobile Lunar Lander in Crewed Lunar Exploration Missions
,”
Manned Spaceflight
,
21
(
5
), pp.
472
478
.
26.
Zhu
,
R.
,
2009
, “
Advances in the Soviet/Russian EVA Spacesuit Technology
,”
Manned Spaceflight
,
1
(15), pp. 25–45.
27.
Birckenstaedt, B.
,
Hopkins, J.
,
Kutter, B.
,
Zegler, F.
, and
Mosher, T.
,
2005
, “
Lunar Lander Configurations Incorporating Accessibility, Mobility, and Centaur Cryogenic Propulsion Experience
,”
AIAA
Paper No. 2006-7284.
28.
Shoham
,
M.
, and
Roth
,
B.
,
1997
, “
Connectivity in Open and Closed Loop Robotic Mechanisms
,”
Mech. Mach. Theory
,
32
(
3
), pp.
279
293
.
29.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
New and Revised Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
75
82
.
30.
Deng
,
Z.
,
Yang
,
F.
, and
Tao
,
J.
,
2012
, “
Adding Sub-Chain Method for Structural Synthesis of Planar Closed Kinematic Chains
,”
Chin. J. Mech. Eng.
,
25
(
2
), pp.
206
213
.
31.
Hervé
,
J. M.
,
1978
, “
Analyse Structurelle Des Mécanismes Par Groupe Des Déplacements
,”
Mech. Mach. Theory
,
13
(
4
), pp.
437
450
.
32.
Li
,
Q.
, and
Herve
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schoenflies Motion
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
158
164
.
33.
Wu
,
Y.
,
Li
,
Z.
,
Ding
,
H.
, and
Lou
,
Y.
,
2008
, “
Quotient Kinematics Machines: Concept, Analysis and Synthesis
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
1964
1969
.
34.
Gao
,
F.
,
Li
,
W.
,
Zhao
,
X.
,
Jin
,
Z.
, and
Zhao
,
H.
,
2002
, “
New Kinematic Structures for 2-, 3-, 4-, and 5-DOF Parallel Manipulator Designs
,”
Mech. Mach. Theory
,
37
(
11
), pp.
1395
1411
.
35.
Jun
,
H. E.
,
Feng
,
G.
,
Meng
,
X.
, and
Guo
,
W.
,
2015
, “
Type Synthesis for 4-DOF Parallel Press Mechanism Using G_F Set Theory
,”
Chin. J. Mech. Eng.
,
28
(
4
), pp.
851
859
.
36.
Huang
,
Z.
, and
Li
,
Q. C.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Robot. Res.
,
21
(
2
), pp.
131
146
.
37.
Kong
,
X.
,
2013
, “
Type Synthesis of 3-DOF Parallel Manipulators With Both a Planar Operation Mode and a Spatial Translational Operation Mode 1
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041015
.
38.
Zhao
,
T. S.
,
Dai
,
J. S.
, and
Huang
,
Z.
,
2002
, “
Geometric Analysis of Overconstrained Parallel Manipulators With Three and Four Degrees of Freedom
,”
JSME Int. J.
,
45
(
3
), pp.
730
740
.
39.
Lin
,
R.
,
Guo
,
W.
, and
Gao
,
F.
,
2015
, “
Type Synthesis of a Family of 4-, 5- and 6-DOF Sea Lion Ball Mechanisms With Three Limbs
,”
ASME J. Mech. Rob.
,
8
(
2
), p. 021023.
40.
Yang
,
T. L.
,
Liu
,
A. X.
,
Jin
,
Q.
,
Luo
,
Y. F.
,
Shen
,
H. P.
, and
Hang
,
L. B.
,
2009
, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des.
,
31
(
2
), p.
021001
.http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1472491
41.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2005
, “
Type Synthesis of 5-Dof Parallel Manipulators Based on Screw Theory
,”
Int. J. Robot Autom.
,
22
(
10
), pp.
535
547
.
42.
Gogu
,
G.
,
2007
, “
Structural Synthesis of Fully-Isotropic Parallel Robots With Schönflies Motions Via Theory of Linear Transformations and Evolutionary Morphology
,”
Eur. J. Mech. A
,
26
(
2
), pp.
242
269
.
43.
Xie
,
F.
,
Tiemin
,
L. I.
, and
Liu
,
X.
,
2013
, “
Type Synthesis of 4-DOF Parallel Kinematic Mechanisms Based on Grassmann Line Geometry and Atlas Method
,”
Chin. J. Mech. Eng.
,
26
(
6
), pp.
1073
1081
.
44.
Fan
,
C.
,
Liu
,
H.
, and
Zhang
,
Y.
,
2013
, “
Type Synthesis of 2T2R, 1T2R and 2R Parallel Mechanisms
,”
Mech. Mach. Theory
,
61
(
1
), pp.
184
190
.
45.
Toz
,
M.
, and
Kucuk
,
S.
,
2014
, “
Dimensional Optimization of 6-DOF 3-CCC Type Asymmetric Parallel Manipulator
,”
Adv. Rob.
,
28
(
9
), pp.
625
637
.
46.
Gao
,
Z.
,
Zhang
,
D.
, and
Ge
,
Y.
,
2010
, “
Design Optimization of a Spatial Six Degree-of-Freedom Parallel Manipulator Based on Artificial Intelligence Approaches
,”
Rob. Comput. Integr. Manuf.
,
26
(
2
), pp.
180
189
.
47.
Toz
,
M.
, and
Kucuk
,
S.
,
2013
, “
Dexterous Workspace Optimization of an Asymmetric Six-Degree of Freedom Stewart–Gough Platform Type Manipulator
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1516
1528
.
48.
Yang
,
P.
, and
Gao
,
F.
,
2014
, “
Leg Kinematic Analysis and Prototype Experiments of Walking-Operating Multifunctional Hexapod Robot
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
12
), pp.
2217
2232
.
49.
Pan
,
Y.
, and
Gao
,
F.
,
2014
, “
A New Six-Parallel-Legged Walking Robot for Drilling Holes on the Fuselage
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
4
), pp.
753
764
.
50.
Zhang
,
J.
,
Xu
,
Z.
, and
Zang
,
W.
,
2007
, “
The New Method of Confirming the Dead-Point Location of the Plane Lower Four-Bar Linkage
,”
Croat. J. Eng.
,
23
(4), pp. 28–29, 40.
You do not currently have access to this content.