This paper presents a novel assembly sequence planning (ASP) procedure utilizing a subassembly based search algorithm (SABLS) for micro-assembly applications involving geometric and other assembly constraints. The breakout local search (BLS) algorithm is adapted to provide sequencing solutions in assemblies with no coherent solutions by converting the final assembly into subassemblies which can be assembled together. This is implemented using custom-made microparts which fit together only in a predefined fashion. Once the ASP is done, the parts are manipulated from a cluttered space to their final positions in the subassemblies using a path-planning algorithm based on rapidly exploring random tree (RRT*), a random-sampling based execution, and micromanipulation motion primitives. The entire system is demonstrated by assembling LEGO® inspired microparts into various configurations which involve subassemblies, showing the versatility of the system.

References

References
1.
Su
,
Q.
,
2007
, “
Computer Aided Geometric Feasible Assembly Sequence Planning and Optimizing
,”
Int. J. Adv. Manuf. Technol.
,
33
(
1–2
), pp.
48
57
.
2.
Rashid
,
M. F. F.
,
Hutabarat
,
W.
, and
Tiwari
,
A.
,
2012
, “
A Review on Assembly Sequence Planning and Assembly Line Balancing Optimisation Using Soft Computing Approaches
,”
Int. J. Adv. Manuf. Technol.
,
59
(
1–4
), pp.
335
349
.
3.
Lu
,
C.
, and
Liu
,
Y.-C.
,
2012
, “
A Disassembly Sequence Planning Approach With an Advanced Immune Algorithm
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
11
), pp.
2739
2749
.
4.
Wang
,
W. L.
, and
Shi
,
X. J.
,
2014
, “
Disassembly Sequence Planning Based on Poisoning Ant Colony Algorithm
,”
Key Engineering Materials
(Advanced Design and Manufacture), Vol.
572
,
Trans Tech Publications
, Zurich, Switzerland, pp.
340
343
.
5.
Hong
,
D. S.
, and
Cho
,
H. S.
,
1999
, “
Generation of Robotic Assembly Sequences Using a Simulated Annealing
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots With High Intelligence and Emotional Quotients
, Kyongju, South Korea, Oct. 17–21, Vol.
2
, pp.
1247
1252
.
6.
Chen
,
J.
,
Zhang
,
Y.
, and
Liao
,
H.
,
2012
, “
Disassembly Sequence Planning Based on Improved Genetic Algorithm
,”
Advances in Multimedia, Software Engineering and Computing
,
D.
Jin
and
S.
Lin
, eds., Vol.
2
,
Springer
Berlin
, pp.
471
476
.
7.
Morato
,
C.
,
Kaipa
,
K. N.
, and
Gupta
,
S. K.
,
2013
, “
Improving Assembly Precedence Constraint Generation by Utilizing Motion Planning and Part Interaction Clusters
,”
Comput.-Aided Des.
,
45
(
11
), pp.
1349
1364
.
8.
Xu
,
L. D.
,
Wang
,
C.
,
Bi
,
Z.
, and
Yu
,
J.
,
2012
, “
Autoassem: An Automated Assembly Planning System for Complex Products
,”
IEEE Trans. Ind. Inf.
,
8
(
3
), pp.
669
678
.
9.
Ghandi
,
S.
, and
Masehian
,
E.
,
2015
, “
A Breakout Local Search (BLS) Method for Solving the Assembly Sequence Planning Problem
,”
Eng. Appl. Artif. Intell.
,
39
, pp.
245
266
.
10.
Seymour
,
J.
, and
Cappelleri
,
D. J.
,
2016
, “
Automated Microassembly Sequence Planning With Sub-Assemblies
,”
ASME
Paper No. DETC2016-59736.
11.
Savia
,
M.
, and
Koivo
,
H. N.
,
2009
, “
Contact Micromanipulation Survey of Strategies
,”
IEEE/ASME Trans. Mechatronics
,
14
(
4
), pp.
504
514
.
12.
Feddema
,
J. T.
,
Xavier
,
P.
, and
Brown
,
R.
,
1999
, “
Micro-Assembly Planning With Van Der Waals Force
,”
IEEE International Symposium on Assembly and Task Planning
(
ISATP '99
), Porto, Portugal, July 24, pp.
32
38
.
13.
Cecil
,
J.
,
Vasquez
,
D.
, and
Powell
,
D.
,
2005
, “
A Review of Gripping and Manipulation Techniques for Micro-Assembly Applications
,”
Int. J. Prod. Res.
,
43
(
4
), pp.
819
828
.
14.
Fearing
,
R. S.
,
1995
, “
Survey of Sticking Effects for Micro Parts Handling
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
, Pittsburgh, PA, Aug. 5–9, pp.
212
217
.
15.
Nof
,
S. Y.
,
1999
,
Handbook of Industrial Robotics
,
2nd ed.
,
Wiley Sons
,
New York
.
16.
Zhou
,
Y.
, and
Nelson
,
B. J.
,
2000
, “
The Effect of Material Properties and Gripping Force on Micrograsping
,” IEEE International Conference on Robotics and Automation. Symposia Proceedings, San Francisco, CA, Apr. 24–28, pp.
1115
1120
.
17.
Keller
,
C.
,
1998
, “
Microgrippers With Integrated Actuator and Force Sensors
,”
World Automation Congress
, pp.
217
222
.
18.
Cecil
,
J.
, and
Gobinath
,
N.
,
2005
, “
Development of a Virtual and Physical Work Cell to Assemble Micro-Devices
,”
Rob. Comput.-Integr. Manuf.
,
21
(
4–5
), pp.
431
441
.
19.
Alex
,
J.
,
Vikramaditya
,
B.
, and
Nelson
,
B.
,
1998
, “
A Virtual Reality Teleoperator Interface for Assembly of Hybrid MEMS Prototypes
,”
ASME
Paper No. DETC98/MECH-5836.
20.
Cappelleri
,
D. J.
,
Cheng
,
P.
,
Fink
,
J.
,
Gavrea
,
B.
, and
Kumar
,
V.
,
2011
, “
Automated Assembly for Mesoscale Parts
,”
IEEE Trans. Autom. Sci. Eng.
,
8
(
3
), pp.
598
613
.
21.
Salganicoff
,
M.
,
Metta
,
G.
, and
Sandini
,
A. O. G.
,
1993
, “
A Vision-Based Learning Method for Pushing Manipulation
,”
AAAI Fall Symposium on Machine Learning in Computer Vision
, Raleigh, NC, Oct. 22–24, pp. 90–94.
22.
Kopicki
,
M.
,
Zurek
,
S.
,
Stolkin
,
R.
,
Mörwald
,
T.
, and
Wyatt
,
J.
,
2011
, “
Learning to Predict How Rigid Objects Behave Under Simple Manipulation
,”
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
5722
5729
.
23.
Mason
,
M. T.
,
1982
, “
Manipulator Grasping and Pushing Operations
,” Massachusetts Institute of Technology, Cambridge, MA.
24.
Maeda
,
Y.
,
Hirokazu K.
,
Yasumichi A.
, and
Tamio A.
, 2001, “
Planning of Graspless Manipulation by Multiple Robot Fingers
,”
IEEE
International Conference on Robotics and Automation, Seoul, South Korea, May 21–26, pp. 2474–2479.
25.
Song
,
P.
,
Pang
,
J.-S.
, and
Kumar
,
R. V.
,
2004
, “
A Semi-Implicit Time-Stepping Model for Frictional Compliant Contact Problems a Semi-Implicit Time-Stepping Model for Frictional Compliant Contact Problems
,”
Int. J.
,
60
(
13
), pp.
2231
2261
.https://pdfs.semanticscholar.org/336b/a67d57188d434bc1b352f0d1f131c1c44835.pdf
26.
Trinklet
,
J. C.
,
Berard
,
S.
, and
Pang
,
J. S.
,
2005
, “
A Time-Stepping Scheme for Quasistatic Multibody Systems
,”
IEEE
International Symposium on Assembly and Task Planning
, Montreal, Quebec, Canada, July 19–21, pp.
174
181
.
27.
Vikramaditya
,
B.
, and
Nelson
,
B. J.
,
1997
, “
Visually Guided Microassembly Using Optical Microscopes and Active Vision Techniques
,”
International Conference on Robotics and Automation
, (
ICRA
), Albuquerque, NM, Apr. 25, pp.
3172
3177
.
28.
Cappelleri
,
D. J.
,
Fatovic
,
M.
, and
Fu
,
Z.
,
2011
, “
Caging Grasps for Micromanipulation Amp; Microassembly
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30 pp.
925
930
.
29.
Kosuge
,
K.
,
Hirata
,
Y.
,
Asama
,
H.
,
Kaetsu
,
H.
, and
Kawabata
,
K.
,
1999
, “
Motion Control of Multiple Autonomous Mobile Robots Handling a Large Object in Coordination
,”
IEEE
International Conference on Robotics and Automation
, Detroit, MI, May 10–15, Vol.
4
, pp.
2666
2673
.
30.
Rus
,
D.
,
1997
, “
Coordinated Manipulation of Objects in a Plane
,”
Algorithmica
,
19
(
1–2
), pp.
129
147
.
31.
Mataric
,
M. J.
,
Nilsson
,
M.
, and
Simsarin
,
K. T.
,
1995
, “
Cooperative Multi-Robot Box-Pushing
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Human Robot Interaction and Cooperative Robots
, Pittsburgh, PA, Aug 5–9, pp.
556
561
.
32.
Pereira
,
G. A. S.
,
Campos
,
M. F. M.
, and
Kumar
,
V.
,
2004
, “
Decentralized Algorithms for Multi-Robot Manipulation Via Caging
,”
Int. J. Rob. Res.
,
23
(
7–8
), pp.
783
795
.
33.
Fink
,
J.
,
Hsieh
,
M. A.
, and
Kumar
,
V.
,
2008
, “
Multi-Robot Manipulation Via Caging in Environments With Obstacles
,”
IEEE
International Conference on Robotics and Automation
, Pasadena, CA, May 19–23, pp.
1471
1476
.
34.
Cappelleri
,
D. J.
,
Fatovic
,
M.
, and
Shah
,
U.
,
2011
, “
Caging Micromanipulation for Automated Microassembly
,”
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
3145
3150
.
35.
Cappelleri
,
D. J.
,
Fink
,
J.
,
Mukundakrishnan
,
B.
,
Kumar
,
V.
, and
Trinkle
,
J. C.
,
2006
, “
Designing Open-Loop Plans for Planar Micro-Manipulation
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, FL, May 15–19, pp.
637
642
.
36.
Cheng
,
P.
,
Cappelleri
,
D.
,
Gavrea
,
B.
, and
Kumar
,
V.
,
2007
, “
Planning and Control of Meso-Scale Manipulation Tasks With Uncertainties
,”
Robotics: Science and Systems
, Atlanta, GA.
37.
Luders
,
B. D.
,
Karaman
,
S.
, and
How
,
J. P.
,
2013
, “
Robust Sampling-Based Motion Planning With Asymptotic Optimality Guarantees
,”
AIAA
Paper No. AIAA 2013-5097.
38.
Noreen
,
I.
,
Khan
,
A.
, and
Habib
,
Z.
,
2016
, “
A Comparison of RRT, RRT* and RRT*-Smart Path Planning Algorithms
,”
IJCSNS Int. J. Comput. Sci. Network Secur.
,
16
(
10
), pp.
20
27
.http://paper.ijcsns.org/07_book/201610/20161004.pdf
39.
Zito
,
C.
,
Stolkin
,
R.
,
Kopicki
,
M.
, and
Wyatt
,
J. L.
,
2012
, “
Two-Level RRT Planning for Robotic Push Manipulation
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Vilamoura, Portugal, Oct. 7–12, pp.
678
685
.
40.
Bircher
,
A.
,
Alexis
,
K.
,
Burri
,
M.
,
Oettershagen
,
P.
,
Omari
,
S.
,
Mantel
,
T.
, and
Siegwart
,
R.
,
2015
, “
Structural Inspection Path Planning Via Iterative Viewpoint Resampling With Application to Aerial Robotics
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA,May 26–30, pp.
6423
6430
.
41.
Connell
,
D.
, and
La
,
H. M.
,
2017
, “
Dynamic Path Planning and Replanning for Mobile Robots Using RRT*
,” IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1429–1434.
42.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2011
, “
Sampling-Based Algorithms for Optimal Motion Planning
,”
Int. J. Rob. Res.
,
30
(
7
), pp.
846
894
.
43.
Das
,
A. N.
,
Murthy
,
R.
,
Popa
,
D. O.
, and
Stephanou
,
H. E.
,
2012
, “
A Multiscale Assembly and Packaging System for Manufacturing of Complex Micro-Nano Devices
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
1
), pp.
160
170
.
You do not currently have access to this content.