A mechanism consisting of twisting and tilting joints is introduced to provide omnidirectional thrust-vectoring capabilities to a quadrotor system. This mechanism eliminates mechanical constraints and kinematic singularities to provide full directional authority to all four individual thrust vectors. The presented system fully decouples position and attitude dynamics to overcome the intrinsic maneuverability limitations of traditional multirotors while maximizing thrust efficiency over its entire configuration space. This paper presents a mathematical model of the system, introduces a control method for position and attitude tracking, and presents numerical simulation results that demonstrate the system benefits.

References

References
1.
Crowther
,
B.
,
Lanzon
,
A.
,
Maya-Gonzalez
,
M.
, and
Langkamp
,
D.
,
2011
, “
Kinematic Analysis and Control Design for a Nonplanar Multirotor Vehicle
,”
J. Guid., Control, Dyn.
,
34
(
4
), pp.
1157
1171
.
2.
Jiang
,
G.
, and
Voyles
,
R.
,
2014
, “
A Nonparallel Hexrotor Uav With Faster Response to Disturbances for Precision Position Keeping
,”
IEEE
International Symposium on Safety, Security, and Rescue Robotics
, Hokkaido, Japan, Oct. 27–30, pp.
1
5
.
3.
Rajappa
,
S.
,
Ryll
,
M.
,
Bülthoff
,
H. H.
, and
Franchi
,
A.
,
2015
, “
Modeling, Control and Design Optimization for a Fully-Actuated Hexarotor Aerial Vehicle With Tilted Propellers
,”
IEEE
International Conference on Robotics and Automation, Seattle, WA, May 26–30, pp.
4006
4013
.
4.
Brescianini
,
D.
, and
D'Andrea
,
R.
,
2016
, “
Design, Modeling and Control of an Omni-Directional Aerial Vehicle
,”
IEEE
International Conference on Robotics and Automation, Stockholm, Sweden, May 16–21, pp.
3261
3266
.
5.
Ryll
,
M.
,
Muscio
,
G.
,
Pierri
,
F.
,
Cataldi
,
E.
,
Antonelli
,
G.
,
Caccavale
,
F.
, and
Franchi
,
A.
,
2017
, “
6d Physical Interaction With a Fully Actuated Aerial Robot
,”
IEEE
Robotics and Automation, Singapore, May 29–June 3, pp.
5190
5195
.
6.
Mohamed
,
M. K.
, and
Lanzon
,
A.
,
2012
, “
Design and Control of Novel Tri-Rotor UAV
,”
UKACC International Conference on Control
, Cardiff, UK, Sept. 3–5, pp.
304
309
.
7.
Kastelan
,
D.
,
Konz
,
M.
, and
Rudolph
,
J.
,
2015
, “
Fully Actuated Tricopter With Pilot-Supporting Control
,”
IFAC-PapersOnLine
,
48
(
9
), pp.
79
84
.
8.
Hua
,
M.-D.
,
Hamel
,
T.
,
Morin
,
P.
, and
Samson
,
C.
,
2015
, “
Control of Vtol Vehicles With Thrust-Tilting Augmentation
,”
Automatica
,
52
, pp.
1
7
.
9.
Nemati
,
A.
, and
Kumar
,
M.
,
2014
, “
Modeling and Control of a Single Axis Tilting Quadcopter
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp.
3077
3082
.
10.
Oosedo
,
A.
,
Abiko
,
S.
,
Narasaki
,
S.
,
Kuno
,
A.
,
Konno
,
A.
, and
Uchiyama
,
M.
,
2015
, “
Flight Control Systems of a Quad Tilt Rotor Unmanned Aerial Vehicle for a Large Attitude Change
,” IEEE International Conference on Robotics and Automation (
ICRA
), Seattle, WA, May 26–30, pp.
2326
2331
.
11.
Ryll
,
M.
,
Bülthoff
,
H. H.
, and
Giordano
,
P. R.
,
2015
, “
A Novel Overactuated Quadrotor Unmanned Aerial Vehicle: Modeling, Control, and Experimental Validation
,”
IEEE Trans. Control Syst. Technol.
,
23
(
2
), pp.
540
556
.
12.
Invernizzi
,
D.
, and
Lovera
,
M.
,
2017
, “
Geometric Tracking Control of Thrust Vectoring UAVS
,” e-print
arXiv:1703.06443
.https://arxiv.org/abs/1703.06443
13.
Kaufman
,
E.
,
Caldwell
,
K.
,
Lee
,
D.
, and
Lee
,
T.
,
2014
, “
Design and Development of a Free-Floating Hexrotor UAV for 6-DOF Maneuvers
,”
IEEE
Aerospace Conference
, Big Sky, MT,Mar. 1–8, pp.
1
10
.
14.
Ryll
,
M.
,
Bicego
,
D.
, and
Franchi
,
A.
,
2016
, “
Modeling and Control of Fast-Hex: A Fully-Actuated by Synchronized-Tilting Hexarotor
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Daejeon, South Korea,Oct. 9–14, pp.
1689
1694
.
15.
Kamel
,
M.
,
Verling
,
S.
,
Elkhatib
,
O.
,
Sprecher
,
C.
,
Wulkop
,
P.
,
Taylor
,
Z.
,
Siegwart
,
R.
, and
Gilitschenski
,
I.
,
2018
, “
Voliro: An Omnidirectional Hexacopter With Tiltable Rotors
,” e-print
arXiv:1801.04581
.https://arxiv.org/abs/1801.04581
16.
Lee
,
T.
,
McClamroch
,
N. H.
, and
Leok
,
M.
,
2005
, “
A Lie Group Variational Integrator for the Attitude Dynamics of a Rigid Body With Applications to the 3D Pendulum
,”
IEEE
Conference on Control Applications, Toronto, ON, Aug. 28–31, pp.
962
967
.
17.
Meyer
,
G.
,
1971
, “
Design and Global Analysis of Spacecraft Attitude Control Systems
,” Ames Research Center, Moffett Field, CA, Report No.
NASA-TR-R-361
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710009016.pdf
18.
Koditschek
,
D. E.
,
1989
, “
The Application of Total Energy as a Lyapunov Function for Mechanical Control Systems
,”
Contemp. Math.
,
97
, p.
131
.
19.
Bullo
,
F.
, and
Lewis
,
A. D.
,
2004
,
Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems
, Vol.
49
,
Springer Science & Business Media
, New York.
20.
Lee
,
T.
,
Leoky
,
M.
, and
McClamroch
,
N. H.
,
2010
, “
Geometric Tracking Control of a Quadrotor UAV on se (3)
,” IEEE Conference on Decision and Control (
CDC
), Atlanta, GA, Dec. 15–17, pp.
5420
5425
.
This content is only available via PDF.
You do not currently have access to this content.