There is a growing interest in assistive wearable devices for laden walking, with applications to civil hiking or military soldiers carrying heavy loads in outdoor rough terrains. While the solution of powered exoskeleton is known to be heavy and energy consuming, recent works presented wearable light-weight (semi-)passive elements based on elastic springs engaged by timed clutches. In this work, we theoretically study the dynamics of a five-link model of a human walker with point feet, using numerical simulations. We propose a novel mechanism of a spring and two triggered clutches, which enables locking the spring with stored energy while the device's length can change freely. For a given gait of joint angles trajectories, we numerically optimize the spring parameters and clutch timing for minimizing the metabolic energy cost. We show that a cleverly designed device can, in theory, lead to a drastic reduction in metabolic energy expenditure.

References

References
1.
Huo
,
W.
,
Mohammed
,
S.
,
Moreno
,
J. C.
, and
Amirat
,
Y.
,
2016
, “
Lower Limb Wearable Robots for Assistance and Rehabilitation: A State of the Art
,”
IEEE Syst. J.
,
10
(
3
), pp.
1068
1081
.
2.
Young
,
A. J.
, and
Ferris
,
D. P.
,
2017
, “
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons
,”
IEEE Trans. Neural Syst. Rehabilitation Eng.
,
25
(
2
), pp.
171
182
.
3.
Miller
,
L. E.
,
Zimmermann
,
A. K.
, and
Herbert
,
W. G.
,
2016
, “
Clinical Effectiveness and Safety of Powered Exoskeleton-Assisted Walking in Patients With Spinal Cord Injury: Systematic Review With Meta-Analysis
,”
Med. Dev.
,
9
, p.
455
.
4.
Bundy
,
D. T.
,
Souders
,
L.
,
Baranyai
,
K.
,
Leonard
,
L.
,
Schalk
,
G.
,
Coker
,
R.
,
Moran
,
D. W.
,
Huskey
,
T.
, and
Leuthardt
,
E. C.
,
2017
, “
Contralesional Brain–Computer Interface Control of a Powered Exoskeleton for Motor Recovery in Chronic Stroke Survivors
,”
Stroke
,
48
(
7
), p.
116
.
5.
Louie
,
D. R.
, and
Eng
,
J. J.
,
2016
, “
Powered Robotic Exoskeletons in Post-Stroke Rehabilitation of Gait: A Scoping Review
,”
J. Neuroeng. Rehabil.
,
13
(
1
), p.
53
.
6.
White
,
H.
,
Hayes
,
S.
, and
White
,
M.
,
2015
, “
The Effect of Using a Powered Exoskeleton Training Programme on Joint Range of Motion on Spinal Injured Individuals: A Pilot Study
,”
Int. J. Phys. Ther. Rehabil.
,
1
(
1
), p.
102
.
7.
Raab
,
K.
,
Krakow
,
K.
,
Tripp
,
F.
, and
Jung
,
M.
,
2016
, “
Effects of Training With the ReWalk Exoskeleton on Quality of Life in Incomplete Spinal Cord Injury: A Single Case Study
,”
Spinal Cord Series Cases
,
2
, p.
15025
.
8.
Tung
,
W. Y.-W.
,
McKinley
,
M.
,
Pillai
,
M. V.
,
Reid
,
J.
, and
Kazerooni
,
H.
,
2013
, “
Design of a Minimally Actuated Medical Exoskeleton With Mechanical Swing-Phase Gait Generation and Sit-Stand Assistance
,”
ASME
Paper No. DSCC2013-4038
.
9.
Kusuda
,
Y.
,
2009
, “
In Quest of Mobility–Honda to Develop Walking Assist Devices
,”
Ind. Rob. Int. J.
,
36
(
6
), pp.
537
539
.
10.
Ikeuchi
,
Y.
,
Ashihara
,
J.
,
Hiki
,
Y.
,
Kudoh
,
H.
, and
Noda
,
T.
,
2009
, “
Walking Assist Device With Bodyweight Support System
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), St. Louis, MO, Oct. 10–15, pp.
4073
4079
.
11.
Karthikeyan
,
P.
,
Satheesh Kumar
,
G.
, and
Ajin
,
M.
,
2016
, “
Geriatric Walk Assist Robot-Design, Analysis and Implementation of a Modular Lower Limb Exoskeleton Robot
,”
Appl. Mech. Mater.
,
852
, pp.
775
780
.
12.
Kopp
,
C.
,
2011
, “
Exoskeletons for Warriors of the Future
,”
Defence Today
,
9
(
2
), pp.
38
40
.http://www.ausairpower.net/PDF-A/DT-Exoskeletons-Sep-2011.pdf
13.
Jacobsen
,
S.
,
2007
, “
On the Development of XOS, a Powerful Exoskeletal Robot (Plenary Talks)
,”
In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Diego, CA, Oct. 29–Nov. 2.
14.
Kazerooni
,
H.
,
2007
, “
Human Augmentation and Exoskeleton Systems in Berkeley
,”
Int. J. Humanoid Rob.
,
4
(
3
), pp.
575
605
.
15.
Fontana
,
M.
,
Vertechy
,
R.
,
Marcheschi
,
S.
,
Salsedo
,
F.
, and
Bergamasco
,
M.
,
2014
, “
The Body Extender: A Full-Body Exoskeleton for the Transport and Handling of Heavy Loads
,”
IEEE Rob. Autom. Mag.
,
21
(
4
), pp.
34
44
.
16.
Bogue
,
R.
,
2015
, “
Robotic Exoskeletons: A Review of Recent Progress
,”
Ind. Rob. Int. J.
,
42
(
1
), pp.
5
10
.
17.
Cornwall
,
W.
,
2015
, “
In Pursuit of the Perfect Power Suit
,”
Science
,
350
(
6258
), pp.
270
273
.
18.
Malcolm
,
P.
,
Galle
,
S.
, and
De Clercq
,
D.
,
2017
, “
Fast Exoskeleton Optimization
,”
Science
,
356
(
6344
), pp.
1230
1231
.
19.
Panizzolo
,
F. A.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Siviy
,
C.
,
Schmidt
,
K.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
A Biologically-Inspired Multi-Joint Soft Exosuit That Can Reduce the Energy Cost of Loaded Walking
,”
J. Neuroeng. Rehabil.
,
13
(
1
), p.
43
.
20.
Shamaei
,
K.
,
Cenciarini
,
M.
,
Adams
,
A. A.
,
Gregorczyk
,
K. N.
,
Schiffman
,
J. M.
, and
Dollar
,
A. M.
,
2014
, “
Design and Evaluation of a Quasi-Passive Knee Exoskeleton for Investigation of Motor Adaptation in Lower Extremity Joints
,”
IEEE Trans. Biomed. Eng.
,
61
(
6
), pp.
1809
1821
.
21.
Alexander
,
R.
,
1988
,
Elastic Mechanisms in Animal Movement
,
Cambridge University Press
,
Cambridge, UK
.
22.
Collins
,
S. H.
,
Wiggin
,
M. B.
, and
Sawicki
,
G. S.
,
2015
, “
Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton
,”
Nature
,
522
(
7555
), pp.
212
215
.
23.
Hoover
,
J.
, and
Meguid
,
S.
,
2011
, “
Performance Assessment of the Suspended-Load Backpack
,”
Int. J. Mech. Mater. Des.
,
7
(
2
), pp.
111
121
.
24.
Ackerman
,
J.
,
Kelley
,
K.
, and
Seipel
,
J.
,
2015
, “
Dynamics of Carrying a Load With a Handle Suspension
,”
J. Biomech.
,
48
(
6
), pp.
1084
1091
.
25.
Ackerman
,
J.
, and
Seipel
,
J.
,
2015
, “
Design of Stabilizing Arm Mechanisms for Carrying and Positioning Loads
,”
ASME J. Mech. Des.
,
137
(
10
), p.
104501
.
26.
Ackerman
,
J.
, and
Seipel
,
J.
,
2013
, “
Energy Efficiency of Legged Robot Locomotion With Elastically Suspended Loads
,”
IEEE Trans. Rob.
,
29
(
2
), pp.
321
330
.
27.
Rome
,
L. C.
,
Flynn
,
L.
, and
Yoo
,
T. D.
,
2006
, “
Biomechanics: Rubber Bands Reduce the Cost of Carrying Loads
,”
Nature
,
444
(
7122
), pp.
1023
1024
.
28.
Foissac
,
M.
,
Millet
,
G. Y.
,
Geyssant
,
A.
,
Freychat
,
P.
, and
Belli
,
A.
,
2009
, “
Characterization of the Mechanical Properties of Backpacks and Their Influence on the Energetics of Walking
,”
J. Biomechanics
,
42
(
2
), pp.
125
130
.
29.
Ackerman
,
J.
, and
Seipel
,
J.
,
2014
, “
A Model of Human Walking Energetics With an Elastically-Suspended Load
,”
J. Biomech.
,
47
(
8
), pp.
1922
1927
.
30.
Li
,
D.
,
Li
,
T.
,
Li
,
Q.
,
Liu
,
T.
, and
Yi
,
J.
,
2016
, “
A Simple Model for Predicting Walking Energetics With Elastically-Suspended Backpack
,”
J. Biomech.
,
49
(
16
), pp.
4150
4153
.
31.
Rouse
,
E. J.
,
Mooney
,
L. M.
,
Martinez-Villalpando
,
E. C.
, and
Herr
,
H. M.
,
2013
, “
Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption
,”
IEEE International Conference on Rehabilitation Robotics (ICORR)
, Seattle, WA, June 24–26, pp.
1
6
.
32.
Walsh
,
C. J.
,
Endo
,
K.
, and
Herr
,
H.
,
2007
, “
A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation
,”
Int. J. Humanoid Rob.
,
4
(
3
), pp.
487
506
.
33.
Wiggin
,
M. B.
,
Sawicki
,
G. S.
, and
Collins
,
S. H.
,
2011
, “
An Exoskeleton Using Controlled Energy Storage and Release to Aid Ankle Propulsion
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Zurich, Switzerland, June 29–July 1, pp.
1
5
.
34.
Endo
,
K.
,
Paluska
,
D.
, and
Herr
,
H.
,
2006
, “
A Quasi-Passive Model of Human Leg Function in Level-Ground Walking
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Beijing, China, Oct. 9–15, pp.
4935
4939
.
35.
Torrealba
,
R. R.
,
Udelman
,
S. B.
, and
Fonseca-Rojas
,
E. D.
,
2017
, “
Design of Variable Impedance Actuator for Knee Joint of a Portable Human Gait Rehabilitation Exoskeleton
,”
Mech. Mach. Theory
,
116
, pp.
248
261
.
36.
Häufle
,
D. F.
,
Taylor
,
M.
,
Schmitt
,
S.
, and
Geyer
,
H.
,
2012
, “
A Clutched Parallel Elastic Actuator Concept: Towards Energy Efficient Powered Legs in Prosthetics and Robotics
,” Fourth
IEEE RAS & EMBS
International Conference on Biomedical Robotics and Biomechatronics (BioRob)
, Rome, Italy, June 24–27, pp.
1614
1619
.
37.
Williams
,
R. J.
,
Hansen
,
A. H.
, and
Gard
,
S. A.
,
2009
, “
Prosthetic Ankle-Foot Mechanism Capable of Automatic Adaptation to the Walking Surface
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
035002
.
38.
Aoustin
,
Y.
, and
Formalskii
,
A.
,
2016
, pp.
179
195
. “
Strategy to Lock the Knee of Exoskeleton Stance Leg: Study in the Framework of Ballistic Walking Model
,”
New Trends in Medical and Service Robots
,
Springer
, Switzerland, pp.
39.
Jiang
,
S.
,
Partrick
,
S.
,
Zhao
,
H.
, and
Ames
,
A. D.
,
2012
, “
Outputs of Human Walking for Bipedal Robotic Controller Design
,”
In American Control Conference
(
ACC
), Montreal, QC, June 27–29, pp.
4843
4848
.
40.
Margaria
,
R.
,
1968
, “
Positive and Negative Work Performances and Their Efficiencies in Human Locomotion
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
25
(
4
), pp.
339
351
.
41.
Margaria
,
R.
,
1976
,
Biomechanics and Energetics of Muscular Exercise
,
Oxford University Press
,
Oxford, UK
.
42.
Keren
,
R.
, and
Or
,
Y.
,
2018
, “
Energy Performance Analysis of a Backpack Suspension System With a Timed Clutch for Human Load Carriage
,” Mech. Mach. Theory,
120
, pp.
250
264
.
43.
Murray
,
R. M.
,
Li
,
Z.
,
Sastry
,
S. S.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
44.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
, Hoboken, NJ.
45.
Zhao
,
H.
,
Hereid
,
A.
,
Ma
,
W-L.
, and
Ames
,
A. D.
,
2017
, “
Multi-Contact Bipedal Robotic Locomotion
,”
Robotica
,
35
(
8
), pp.
1072
1106
.
46.
Winters
,
J. M.
,
1990
, “
Hill-Based Muscle Models: A Systems Engineering Perspective
,”
Multiple Muscle Systems
,
Springer
, New York, pp.
69
93
.
47.
Liu
,
J. Z.
,
Brown
,
R. W.
, and
Yue
,
G. H.
,
2002
, “
A Dynamical Model of Muscle Activation, Fatigue, and Recovery
,”
Biophys. J.
,
82
(
5
), pp.
2344
2359
.
You do not currently have access to this content.