A core issue in collaborative robotics is that of impact mitigation, especially when collisions happen with operators. Passively compliant structures can be used as the frame of the cobot, although, usually, they are implemented by means of a single-degree-of-freedom (DoF). However, n-DoF preloaded structures offer a number of advantages in terms of flexibility in designing their behavior. In this work, we propose a comprehensive framework for classifying n-DoF preloaded structures, including one-, two-, and three-dimensional arrays. Furthermore, we investigate the implications of the peculiar behavior of these structures—which present sharp stiff-to-compliant transitions at design-determined load thresholds—on impact mitigation. To this regard, an analytical n-DoF dynamic model was developed and numerically implemented. A prototype of a 10DoF structure was tested under static and impact loads, showing a very good agreement with the model. Future developments will see the application of n-DoF preloaded structures to impact-mitigation on cobots and in the field of mobile robots, as well as to the field of novel architected materials.

References

References
1.
Colgate
,
J.
,
Wannasuphoprasit
,
W.
, and
Peshkin
,
M. A.
,
1996
, “
Cobots: Robots for Collaboration With Human Operators
,”
Proc. ASME Dyn. Syst. Control Div.
,
58
, pp.
433
439
.https://pdfs.semanticscholar.org/5435/3022659475f2cbdc67f051a61e2fef7f82e9.pdf
2.
Yamada
,
Y.
,
Hirasawa
,
Y.
,
Huang
,
S.
,
Umetani
,
Y.
, and
Suita
,
K.
,
1997
, “
Human-Robot Contact in the Safeguarding Space
,”
IEEE/ASME Trans. Mechatronics
,
2
(
4
), pp.
230
236
.
3.
Lim
,
H.-O.
, and
Tanie
,
K.
,
2000
, “
Passive Viscoelastic Trunk and Passively Movable Base
,”
Int. J. Rob. Res.
,
19
(
4
), pp.
307
335
.
4.
Seong-Sik
,
Y.
,
Sungchul
,
K.
,
Seung-Kook
,
Y.
,
Seung-Jong
,
K.
,
Young-Hwan
,
K.
, and
Munsang
,
K.
,
2005
, “
Safe Arm Design With MR-Based Passive Compliant Joints and Visco-Elastic Covering for Service Robot Applications
,”
J. Mech. Sci. Technol.
,
19
(
10
), pp.
1835
1845
.
5.
Park
,
J.-J.
,
Kim
,
B.-S.
,
Song
,
J.-B.
, and
Kim
,
H.-S.
,
2008
, “
Safe Link Mechanism Based on Nonlinear Stiffness for Collision Safety
,”
Mech. Mach. Theory
,
43
(
10
), pp.
1332
1348
.
6.
Park
,
J.-J.
,
Kim
,
H.-S.
, and
Song
,
J.-B.
,
2009
, “
Safe Robot Arm With Safe Joint Mechanism Using Nonlinear Spring System for Collision Safety
,”
IEEE International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp. 3371–3376.
7.
Park
,
J.-J.
, and
Song
,
J.-B.
,
2010
, “
A Nonlinear Stiffness Safe Joint Mechanism Design for Human Robot Interaction
,”
ASME J. Mech. Des.
,
132
(
6
), p.
061005
.
8.
Park
,
J.-J.
, and
Song
,
J.-B.
,
2010
, “
Safe Joint Mechanism Using Inclined Link With Springs for Collision Safety and Positioning Accuracy of a Robot Arm
,”
IEEE International Conference on Robotics and Automation
, Anchorage, AK, May 3–7, pp. 813–818.
9.
López-Martínez
,
J.
,
Blanco-Claraco
,
J. L.
,
García-Vallejo
,
D.
, and
Giménez-Fernández
,
A.
,
2015
, “
Design and Analysis of a Flexible Linkage for Robot Safe Operation in Collaborative Scenarios
,”
Mech. Mach. Theory
,
92
, pp.
1
16
.
10.
Medina
,
J.
,
Lozano
,
P.
,
Jardòn
,
A.
, and
Balaguer
,
C.
,
2016
, “
Design and Characterization of a Novel Mechanism of Multiple Joint
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Daejeon, Korea, Oct. 9–14, pp. 2444–2451.
11.
Lauzier
,
N.
, and
Gosselin
,
C.
,
2015
, “
A Comparison of the Effectiveness of Design Approaches for HumanFriendly Robots
,”
ASME J. Mech. Des.
,
137
(
8
), p.
082302
.
12.
Park
,
J.-J.
,
Song
,
J.-B.
, and
Haddadin
,
S.
,
2015
, “
Collision Analysis and Safety Evaluation Using a Collision Model for the Frontal Robot–Human Impact
,”
Robotica
,
33
(
7
), pp.
1536
1550
.
13.
López-Martínez
,
J.
,
García-Vallejo
,
D.
,
Giménez-Fernández
,
A.
, and
Torres-Moreno
,
J.
,
2014
, “
A Flexible Multibody Model of a Safety Robot Arm for Experimental Validation and Analysis of Design Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011003
.
14.
Courreges
,
F.
,
Laribi
,
M. A.
,
Arsicault
,
M.
, and
Zeghloul
,
S.
,
2016
, “
Designing a Biomimetic Model of Non-Linear Elastic Safety Mechanism for Collaborative Robots
,”
IEEE 14th International Conference on Industrial Informatics
(
INDIN
), Poitiers, France, July 19–21, pp. 231–236.
15.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation
,”
IEEE International Conference on Robotics and Automation
, Pasadena, CA, May 19–23, pp. 1741–1746.
16.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction
,”
IEEE International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp. 526–531.
17.
Mathijssen
,
G.
,
Brackx
,
B.
,
Damme
,
M. V.
,
Lefeber
,
D.
, and
Vanderborght
,
B.
,
2013
, “
Series-Parallel Elastic Actuation (SPEA) With Intermittent Mechanism for Reduced Motor Torque and Increased Efficiency
,”
IEEE/RSJ
International Conference on Intelligent Robots
, Tokyo, Japan, Nov. 3–7, pp. 5841–5846.
18.
Bely
,
P. Y.
,
2003
, “
The Design and Construction of Large Optical Telescopes
,”
Astronomy and Astrophysics Library
,
Springer-Verlag
, New York.
19.
Olivieri
,
L.
,
Antonello
,
A.
,
Savioli
,
L.
, and
Francesconi
,
A.
,
2014
, “
Dynamic Behavior of a Semi-Androgynous Small Satellite Docking Interface
,”
65th International Astronautical Congress
, Toronto, ON, Canada, Sept. 29–Oct. 3.
20.
Wu
,
Y.-S.
, and
Lan
,
C.-C.
,
2014
, “
Linear Variable-Stiffness Mechanisms Based on Preloaded Curved Beams
,”
ASME J. Mech. Des.
,
136
(
12
), p.
122302
.
21.
Qin
,
Z.
,
Yan
,
S.
, and
Chu
,
F.
,
2010
, “
Dynamic Analysis of Clamp Band Joint System Subjected to Axial Vibration
,”
J. Sound Vib.
,
329
(
21
), pp.
4486
4500
.
22.
Liguori
,
C.
,
Paciello
,
V.
,
Paolillo
,
A.
,
Pietrosanto
,
A.
, and
Sommella
,
P.
,
2013
, “
Characterization of Motorcycle Suspension Systems: Comfort and Handling Performance Evaluation
,”
IEEE International Instrumentation and Measurement Technology Conference
(
I2MTC
), Minneapolis, MN, May 6–9, pp. 444–449.
23.
Baronti
,
F.
,
Lenzi
,
F.
,
Roncella
,
R.
,
Saletti
,
R.
, and
Di Tanna
,
O.
,
2007
, “
Embedded Electronic Control System for Continuous Self-Tuning of Motorcycle Suspension Preload
,”
Mediterranean Conference on Control and Automation
, Athens, Greece, June 27–29, pp. 1–6.
24.
Nirmal
,
M. D.
,
Mandal
,
K.
, and
Sun
,
Y. Q.
,
2014
, “
Impact Forces at Dipped Rail Joints
,”
J. Rail Rapid Transit
,
230
(
1
), pp.
271
282
.
25.
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2011
, “
Enhanced Stiffness Modeling of Manipulators With Passive Joints
,”
Mech. Mach. Theory
,
46
(
5
), pp.
662
679
.
26.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators, a Literature Review
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.
27.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
189
222
.
28.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer
, Dordrecht,
The Netherlands
.
29.
Boscariol
,
P.
,
Gallina
,
P.
,
Gasparetto
,
A.
,
Giovagnoni
,
M.
,
Scalera
,
L.
, and
Vidoni
,
R.
,
2017
, “
Evolution of a Dynamic Model for Flexible Multibody Systems
,”
Advances in Italian Mechanism Science
,
Springer
, Cham, pp.
533
541
.
30.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D.
,
Carloni
,
R.
,
Catalano
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Ganesh
,
G.
,
Garabini
,
M.
,
Grebenstein
,
M.
,
Grioli
,
G.
,
Haddadin
,
S.
,
Hoppner
,
H.
,
Jafari
,
A.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Petit
,
F.
, and
Strami
,
S.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
31.
Lauzier
,
N.
, and
Gosselin
,
C.
,
2011
, “
Series Clutch Actuators for Safe Physical Human-Robot Interaction
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp. 5401–5406.
32.
Schaedler
,
T. A.
, and
Carter
,
W. B.
,
2016
, “
Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
187
210
.
33.
Bauer
,
J.
,
Meza
,
L. R.
,
Schaedler
,
T. A.
,
Schwaiger
,
R.
,
Zheng
,
X.
, and
Valdevit
,
L.
,
2017
, “
Nanolattices: An Emerging Class of Mechanical Metamaterials
,”
Adv. Mater.
,
29
(
40
), p.
1701850
.
34.
Valdevit
,
L.
,
2016
, “
3D Manufacturing of Micro and Nano-Architected Materials
,”
Proc. SPIE
,
9738
, p. 97380K.
You do not currently have access to this content.