This paper presents the design and experimental validation of a passive large-displacement constant-force mechanism (CFM). Unlike previous studies, without using extra stiffness-compensation components and active control devices, the presented CFMs can utilize the interaction between the components of a cam and sliders to directly achieve the constant-force characteristic over the entire flexibly designed large displacement once the cam is advisably designed with the consideration of friction effect by using the profile curve identification method (PCIM). Corresponding to the different requirements of conventional and extreme engineering environments, two versions of the mechanism, the basic and ultra-large-displacement CFM models are proposed, respectively. The basic version is designed directly based on the PCIM, whereas the ultra-large-displacement CFM is proposed using the relay-mode action of the multistage sliders. According to the theoretical design method, we design and fabricate two corresponding CFM prototypes. Validation experiments are then conducted, and the results show that both of the prototypes can satisfy the design requirements and possess large-displacement constant-force characteristics owing to the consistency of experimental and design data. Therefore, the proposed design theory for the cam-based large-displacement CFMs is validated and the designed CFMs will have extensive applications in relevant fields for force regulation and overload protection.

References

References
1.
Liu
,
H.
,
Jia
,
Z.
,
Wang
,
F.
, and
Zong
,
F.
,
2012
, “
Research on the Constant Output Force Control System for Giant Magnetostrictive Actuator Disturbed by External Force
,”
Mechatronics
,
22
(
7
), pp.
911
922
.
2.
Liu
,
H. F.
,
Jia
,
Z. Y.
,
Wang
,
F. J.
, and
Zong
,
F. C.
,
2013
, “
Study on a Giant Magnetostrictive Actuator With Constant Output Force
,”
Int. J. Ind. Syst. Eng.
,
13
(
2
), pp.
197
218
.
3.
Chen
,
Y. H.
, and
Lan
,
C. C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.
4.
Hou
,
C. W.
, and
Lan
,
C. C.
,
2013
, “
Functional Joint Mechanisms With Constant-Torque Outputs
,”
Mech. Mach. Theory
,
62
, pp.
166
181
.
5.
So¨nmez
,
U. M.
,
2007
, “
Introduction to Compliant Long Dwell Mechanism Designs Using Buckling Beams and Arcs
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
831
843
.
6.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
,
2003
, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1469
1487
.
7.
Jutte
,
C. V.
, and
Kota
,
S.
,
2008
, “
Design of Nonlinear Springs for Prescribed Load-Displacement Functions
,”
ASME J. Mech. Des.
,
130
(
8
), pp.
1188
1188
.
8.
Pham
,
H. T.
, and
Wang
,
D. A.
,
2011
, “
A Constant-Force Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory
,
46
(
7
), pp.
899
909
.
9.
Wang
,
D. A.
,
Chen
,
J. H.
, and
Pham
,
H. T.
,
2013
, “
A Constant-Force Bistable Micromechanism
,”
Sensors Actuators A
,
189
(
2
), pp.
481
487
.
10.
Parlaktaş
,
V.
,
2013
, “
Spatial Compliant Constant-Force Mechanism
,”
Mech. Mach. Theory
,
67
, pp.
152
165
.
11.
Xu
,
Q.
,
2017
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011006
.
12.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
.
13.
Liu
,
Y.
,
Li
,
D.
,
Yu
,
D.
,
Miao
,
J.
, and
Yao
,
J.
,
2017
, “
Design of a Curved Surface Constant Force Mechanism
,”
Mech. Based Des. Struct.
,
45
(
2
), pp.
160
172
.
14.
Liu
,
Y.
,
Yu
,
D.
, and
Yao
,
J.
,
2016
, “
Design of an Adjustable Cam Based Constant Force Mechanism
,”
Mech. Mach. Theory
,
103
, pp.
85
97
.
15.
Nahar
,
D. R.
, and
Sugar
,
T.
,
2003
, “
Compliant Constant-Force Mechanism With a Variable Output for Micro/Macro Applications
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Taipei, Taiwan, Sept. 14–19, pp.
318
323
.
16.
Nathan
,
R. H.
,
1985
, “
A Constant Force Generation Mechanism
,”
ASME J. Mech. Des.
,
107
(
4
), pp.
508
512
.
17.
Lambert
,
P.
, and
Herder
,
J. L.
,
2017
,
An Adjustable Constant Force Mechanism Using Pin Joints and Springs
(Mechanisms and Machine Science, Vol. 43), Springer, Cham.
18.
Meaders
,
J. C.
, and
Mattson
,
C. A.
,
2010
, “
Optimization of Near-Constant Force Springs Subject to Mating Uncertainty
,”
Struct. Multidiscip. Optim.
,
41
(
1
), pp.
1
15
.
19.
Zhou
,
J.
,
Wang
,
X.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam–Roller–Spring Mechanisms
,”
J. Sound Vib.
,
346
(
1
), pp.
53
69
.
20.
Zhou
,
J.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
A Torsion Quasi-Zero Stiffness Vibration Isolator
,”
J. Sound Vib.
,
338
, pp.
121
133
.
21.
Zhou
,
J. X.
,
Wang
,
X. L.
,
Xu
,
D. L.
, and
Zhang
,
J.
,
2015
, “
Experimental Study on Vibration Isolation Characteristics of the Quasi-Zero Stiffness Isolator With Cam-Roller Mechanism
,”
J. Vib. Eng.
,
28
(
3
), pp.
449
455
.
22.
Lan
,
C. C.
,
Yang
,
S. A.
, and
Wu
,
Y. S.
,
2014
, “
Design and Experiment of a Compact Quasi-Zero-Stiffness Isolator Capable of a Wide Range of Loads
,”
J. Sound Vib.
,
333
(
20
), pp.
4843
4858
.
23.
Xu
,
D.
,
Zhang
,
Y.
,
Zhou
,
J.
, and
Lou
,
J.
,
2013
, “
On the Analytical and Experimental Assessment of the Performance of a Quasi-Zero-Stiffness Isolator
,”
J. Vib. Control
,
20
(
15
), pp.
2314
2325
.
24.
Balandin
,
D. V.
,
Bolotnik
,
N. N.
, and
Pilkey
,
W. D.
,
2001
,
Optimal Protection Impact, Shock and Vibration
,
Gordon and Breach Science Publishers
,
London
.
25.
Barkanov
,
E.
,
Hufenbach
,
W.
, and
Kroll
,
L.
,
2003
, “
Transient Response Analysis of Systems With Different Damping Models
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
33
46
.
26.
Zhang
,
C. H.
,
Yu
,
W.
,
Jian-Ye
,
D. U.
, and
Wen
,
Z. D.
,
2015
, “
Design of a Passive Constant Force Shock Absorber and Its Characteristics
,”
J. Vib. Shock
,
34
(
13
), pp.
176
181
.
27.
Liu
,
X.
,
Huang
,
X.
, and
Hua
,
H.
,
2013
, “
Performance of a Zero Stiffness Isolator Under Shock Excitations
,”
J. Vib. Control
,
20
(
14
), pp.
2090
2099
.
28.
Huang
,
X.
,
Liu
,
X.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2014
, “
Vibration Isolation Characteristics of a Nonlinear Isolator Using Euler Buckled Beam as Negative Stiffness Corrector: A Theoretical and Experimental Study
,”
J. Sound Vib.
,
333
(
4
), pp.
1132
1148
.
29.
Tang
,
B.
, and
Brennan
,
M. J.
,
2014
, “
On the Shock Performance of a Nonlinear Vibration Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
81
(
4
), pp.
207
214
.
30.
Li
,
M.
,
Cheng
,
W.
,
Chen
,
J.
,
Xie
,
R.
, and
Li
,
X.
,
2017
, “
A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide
,”
Sensors
,
17
(
2
), p.
394
.
31.
Tao
,
Z.
,
Zhang
,
H.
,
Chen
,
Y.
, and
Jiang
,
C.
,
2016
, “
Support Principles of NPR Bolt/Cable and Control Techniques of Large-Deformation Disasters
,”
Int. J. Min. Sci. Technol.
,
26
(
6
), pp.
967
973
.
32.
Wu
,
T.
,
Chen
,
C.
,
Han
,
J.
, and
Ren
,
T.
,
2017
, “
Effect of Bolt Rib Spacing on Load Transfer Mechanism
,”
Int. J. Min. Sci. Technol.
,
27
(
3
), pp.
431
434
.
33.
He
,
M.
,
Gong
,
W.
,
Wang
,
J.
,
Qi
,
P.
,
Tao
,
Z.
,
Du
,
S.
, and
Peng
,
Y.
,
2014
, “
Development of a Novel Energy-Absorbing Bolt With Extraordinarily Large Elongation and Constant Resistance
,”
Int. J. Rock Mech. Min. Sci.
,
67
(
67
), pp.
29
42
.
34.
Zhang
,
G.
,
Wang
,
E.
, and
Xu
,
L.
,
2016
, “
Mechanical Characteristics of High Constant Resistance and Large Deformation Anchor Rope in Coal Mines
,”
Chin. J. Rock Mech. Eng.
,
35
(
10
), pp.
2033
2043
.
35.
Li
,
C. C.
,
2010
, “
A New Energy-Absorbing Bolt for Rock Support in High Stress Rock Masses
,”
Int. J. Rock Mech. Min. Sci.
,
47
(
3
), pp.
396
404
.
36.
Wang
,
G.
,
Wu
,
X.
,
Jiang
,
Y.
,
Huang
,
N.
, and
Wang
,
S.
,
2013
, “
Quasi-Static Laboratory Testing of a New Rock Bolt for Energy-Absorbing Applications
,”
Tunnelling Underground Space Technol.
,
38
(
9
), pp.
122
128
.
37.
Wen
,
S.
, and
Huang
,
P.
,
2008
,
Principles of Tribology
,
Tsinghua University Press
,
Beijing, China
.
38.
Ding
,
L.
, and
Cheng
,
Q.
,
2005
,
Numerical Computation Method
,
Beijing Institute of Technology Press
,
Beijing, China
.
You do not currently have access to this content.