This paper introduces a family of statically balanced five-degree-of-freedom (5DOF) parallel mechanisms (PMs) with kinematic and actuation redundancy. Moving platforms of this family of PMs can provide 4DOF Schönflies motion. Three applications are considered in this work. The first and second applications use kinematic redundancy to avoid parallel singularities and perform an auxiliary grasping task in sequence. The third application incorporates actuation redundancy into a kinematically redundant manipulator to increase the load-carrying capacity. Screw theory was used to derive the Jacobian of the 5DOF PM with kinematic and actuation redundancy. Parallel singularities can be completely alleviated by controlling the orientation of the redundant link, thereby obtaining a large rotational workspace, and actuation redundancy increases the load-carrying capacity. Using a commercially available multibody dynamic simulator, an example of trajectory was performed to illustrate the large rotational workspace of the first and second applications and compare the Euclidean norm of the vector of actuation torque of nonredundant and redundant PMs. Three prototypes were also developed to demonstrate the output motion and static balancing property.

References

References
1.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
Springer
,
Dordrecht, The Netherlands
.
2.
Li
,
Q.
, and
Hervé
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schoenflies Motion
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
158
164
.
3.
Yang
,
S.
,
Sun
,
T.
, and
Huang
,
T.
,
2017
, “
Type Synthesis of Parallel Mechanisms Having 3T1R Motion With Variable Rotational Axis
,”
Mech. Mach. Theory
,
109
, pp.
220
230
.
4.
Company
,
O.
,
Marquet
,
F.
, and
Pierrot
,
F.
,
2003
, “
A New High-Speed 4-DOF Parallel Robot Synthesis and Modeling Issues
,”
IEEE Trans. Rob. Autom.
,
19
(
3
), pp.
411
420
.
5.
Choi
,
H. B.
,
Company
,
O.
,
Pierrot
,
F.
,
Konno
,
A.
,
Shibukawa
,
T.
, and
Uchiyama
,
M.
,
2003
, “
Design and Control of a Novel 4-DOFs Parallel Robot H4
,”
IEEE International Conference on Robotics and Automation
, Taipei, Taiwan, Sept. 14–19, pp.
1185
1190
.
6.
Krut
,
S.
,
Benoit
,
M.
,
Ota
,
H.
, and
Pierrot
,
F.
,
2003
, “
I4: A New Parallel Mechanism for Scara Motions
,”
IEEE International Conference on Robotics and Automation
, Taipei, Taiwan, Sept. 14–19, pp.
1875
1880
.
7.
Krut
,
S.
,
Nabat
,
V.
,
Company
,
O.
, and
Pierrot
,
F.
,
2004
, “
A High-Speed Parallel Robot for Scara Motions
,”
IEEE International Conference on Robotics and Automation
, New Orleans, LA, Apr. 26–May 1, pp.
4109
4115
.
8.
Nabat
,
V.
,
Rodriguez
,
M. D. L. O.
,
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
,
2005
, “
Par4: Very High Speed Parallel Robot for Pick-and-Place
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Edmonton, AB, Canada, Aug. 2–6, pp.
553
558
.
9.
Clavel
,
R.
,
1988
, “
Delta, a Fast Robot With Parallel Geometry
,”
18th International Symposium on Industrial Robots
, Lausanne, Switzerland, Apr. 26–28, pp.
91
100
.http://jglobal.jst.go.jp/en/public/20090422/200902036301818447
10.
Richard
,
P.-L.
,
Gosselin
,
C. M.
, and
Kong
,
X.
,
2006
, “
Kinematic Analysis and Prototyping of a Partially Decoupled 4-DOF 3T1R Parallel Manipulator
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
611
616
.
11.
Gogu
,
G.
,
2007
, “
Structural Synthesis of Fully-Isotropic Parallel Robots With Schönflies Motions Via Theory of Linear Transformations and Evolutionary Morphology
,”
Eur. J. Mech.-A/Solids
,
26
(
2
), pp.
242
269
.
12.
Li
,
Z.
,
Lou
,
Y.
,
Zhang
,
Y.
,
Liao
,
B.
, and
Li
,
Z.
,
2013
, “
Type Synthesis, Kinematic Analysis, and Optimal Design of a Novel Class of Schönflies-Motion Parallel Manipulators
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
674
686
.
13.
Company
,
O.
,
Pierrot
,
F.
,
Nabat
,
V.
, and
Rodriguez
,
M. D. L. O
,
2005
, “
Schoenflies Motion Generator: A New Non Redundant Parallel Manipulator With Unlimited Rotation Capability
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
3250
3255
.
14.
Cammarata
,
A.
,
Angeles
,
J.
, and
Sinatra
,
R.
,
2010
, “
Kinetostatic and Inertial Conditioning of the McGill Schönflies-Motion Generator
,”
Adv. Mech. Eng.
,
2010
, p.
186203
.
15.
Kim
,
S. M.
,
Shin
,
K.
,
Yi
,
B.-J.
, and
Kim
,
W.
,
2015
, “
Development of a Novel Two-Limbed Parallel Mechanism Having Schönflies Motion
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
229
(
1
), pp.
136
154
.
16.
Simas
,
H.
, and
Di Gregorio
,
R.
,
2018
, “
Kinetostatics and Optimal Design of a 2PRPU Shoenflies-Motion Generator
,”
Multibody Mechatronic Systems: MUSME Conference Held in Florianópolis
, J. C. M. Carvalho, D. Martins, R. Simoni, and H. Simas, eds., Florianópolis, Brazil, Oct. 24–28, 2017, pp.
141
150
.
17.
Kang
,
L.
,
Oh
,
S.-M.
,
Kim
,
W.
, and
Yi
,
B.-J.
,
2016
, “
Design of a New Gravity Balanced Parallel Mechanism With Schönflies Motion
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
230
(
17
), pp.
3111
3134
.
18.
Lee
,
C.-C.
, and
Hervé
,
J. M.
,
2011
, “
Isoconstrained Parallel Generators of Schoenflies Motion
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021006
.
19.
Lee
,
P.-C.
,
Lee
,
J.-J.
, and
Lee
,
C.-C
,
2010
, “
Four Novel Pick-and-Place Isoconstrained Manipulators and Their Inverse Kinematics
,”
ASME
Paper No. DETC2010-28426.
20.
Harada
,
T.
, and
Angeles
,
J.
,
2014
, “
Kinematics and Singularity Analysis of a CRRHHRRC Parallel Schönflies-Motion Generator
,”
Trans. Can. Soc. Mech. Eng.
,
38
(
2
), pp.
173
183
.
21.
Harada
,
T.
,
Friedlaender
,
T.
, and
Angeles
,
J.
,
2014
, “
The Development of an Innovative Two-DOF Cylindrical Drive: Design, Analysis and Preliminary Tests
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
6338
6344
.
22.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
213
224
.
23.
Isaksson
,
M.
,
Nyhof
,
L.
, and
Nahavandi
,
S.
,
2015
, “
On the Feasibility of Utilising Gearing to Extend the Rotational Workspace of a Class of Parallel Robots
,”
Rob. Comput.-Integr. Manuf.
,
35
, pp.
126
136
.
24.
Gosselin
,
C.
,
Isaksson
,
M.
,
Marlow
,
K.
, and
Laliberté
,
T.
,
2016
, “
Workspace and Sensitivity Analysis of a Novel Nonredundant Parallel SCARA Robot Featuring Infinite Tool Rotation
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
776
783
.
25.
Saglia
,
J. A.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2008
, “
Geometry and Kinematic Analysis of a Redundantly Actuated Parallel Mechanism That Eliminates Singularities and Improves Dexterity
,”
ASME J. Mech. Des.
,
130
(
12
), p.
124501
.
26.
Shayya
,
S.
,
Krut
,
S.
,
Company
,
O.
,
Baradat
,
C.
, and
Pierrot
,
F.
,
2013
, “
A Novel (3T-1R) Redundant Parallel Mechanism With Large Operational Workspace and Rotational Capability
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
436
443
.
27.
Kotlarski
,
J.
,
Heimann
,
B.
, and
Ortmaier
,
T.
,
2012
, “
Influence of Kinematic Redundancy on the Singularity-Free Workspace of Parallel Kinematic Machines
,”
Front. Mech. Eng.
,
7
(
2
), pp.
120
134
.
28.
Isaksson
,
M.
,
2017
, “
Kinematically Redundant Planar Parallel Mechanisms for Optimal Singularity Avoidance
,”
ASME J. Mech. Des.
,
139
(
4
), p.
042302
.
29.
Kang
,
L.
,
Kim
,
W.
, and
Yi
,
B.-J.
,
2017
, “
Modeling and Analysis of Parallel Mechanisms With Both Kinematic and Actuation Redundancies Via Screw Theory
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061007
.
30.
Nokleby
,
S. B.
,
Fisher
,
R.
,
Podhorodeski
,
R. P.
, and
Firmani
,
F.
,
2005
, “
Force Capabilities of Redundantly-Actuated Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
5
), pp.
578
599
.
31.
Zhong
,
L.
, and
Félix
,
M.-C.
,
2015
, “
A Two-Stage Approach for Managing Actuators Redundancy and Its Application to Fault Tolerant Flight Control
,”
Chin. J. Aeronaut.
,
28
(
2
), pp.
469
477
.
32.
Cheng
,
H.
,
Yiu
,
Y.-K.
, and
Li
,
Z.
,
2003
, “
Dynamics and Control of Redundantly Actuated Parallel Manipulators
,”
IEEE/ASME Trans. Mechatronics
,
8
(
4
), pp.
483
491
.
33.
Gosselin
,
C.
,
Laliberté
,
T.
, and
Veillette
,
A.
,
2015
, “
Singularity-Free Kinematically Redundant Planar Parallel Mechanisms With Unlimited Rotational Capability
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
457
467
.
34.
Gosselin
,
C.
, and
Schreiber
,
L. T.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
286
300
.
35.
Isaksson
,
M.
,
Gosselin
,
C.
, and
Marlow
,
K.
,
2016
, “
An Introduction to Utilising the Redundancy of a Kinematically Redundant Parallel Manipulator to Operate a Gripper
,”
Mech. Mach. Theory
,
101
, pp.
50
59
.
36.
Yi
,
B.-J.
,
Na
,
H. Y.
,
Lee
,
J. H.
,
Hong
,
Y.-S.
,
Oh
,
S.-R.
,
Suh
,
I. H.
, and
Kim
,
W. K.
,
2002
, “
Design of a Parallel-Type Gripper Mechanism
,”
Int. J. Rob. Res.
,
21
(
7
), pp.
661
676
.
37.
Mohamed
,
M. G.
, and
Gosselin
,
C. M.
,
2005
, “
Design and Analysis of Kinematically Redundant Parallel Manipulators With Configurable Platforms
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
277
287
.
38.
Seo
,
J.-T.
,
Woo
,
J. H.
,
Lim
,
H.
, and
Yi
,
B.-J.
,
2014
, “
Design of a New Counter-Balancing Stackable Mechanism
,”
IEEE International Conference on Robotics and Automation
, Hong Kong, China, May 31–June 7, pp.
2372
2377
.
39.
Conconi
,
M.
, and
Carricato
,
M.
,
2009
, “
A New Assessment of Singularities of Parallel Kinematic Chains
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
757
770
.
40.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
, Washington, DC, May 11–15, pp.
496
502
.
You do not currently have access to this content.