Rigid origami is a restrictive form of origami that permits continuous motion between folded and unfolded states along the predetermined creases without stretching or bending of the facets. It has great potential in engineering applications, such as foldable structures that consist of rigid materials. The rigid foldability is an important characteristic of an origami pattern, which is determined by both the geometrical parameters and the mountain-valley crease (M-V) assignments. In this paper, we present a systematic method to analyze the rigid foldability and motion of the generalized triangle twist origami pattern using the kinematic equivalence between the rigid origami and the spherical linkages. All schemes of M-V assignment are derived based on the flat-foldable conditions among which rigidly foldable ones are identified. Moreover, a new type of overconstrained 6R linkage and a variation of doubly collapsible octahedral Bricard are developed by applying kirigami technique to the rigidly foldable pattern without changing its degree-of-freedom. The proposed method opens up a new way to generate spatial overconstrained linkages from the network of spherical linkages. It can be readily extended to other types of origami patterns.

References

References
1.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
2.
O'Rourke
,
J.
,
2011
,
How to Fold It: The Mathematics of Linkages, Origami, and Polyhedra
,
Cambridge University Press
,
Cambridge, UK
.
3.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,” The Institute of Space and Astronautical Science Kanagawa, Japan, Report No.
681
.https://repository.exst.jaxa.jp/dspace/bitstream/a-is/7293/1/SA0035000.pdf
4.
Reis
,
P. M.
,
Jiménez
,
F. L.
, and
Marthelot
,
J.
,
2015
, “
Transforming Architectures Inspired by Origami
,”
Proc. Natl. Acad. Sci.
,
112
(
40
), pp.
12234
12235
.
5.
Lee
,
T.-U.
, and
Gattas
,
J. M.
,
2016
, “
Geometric Design and Construction of Structurally Stabilized Accordion Shelters
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031009
.
6.
Belke
,
C. H.
, and
Paik
,
J.
,
2017
, “
Mori: A Modular Origami Robot
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2153
2164
.
7.
Zhakypov
,
Z.
,
Belke
,
C.
, and
Paik
,
J.
,
2017
, “
Tribot: A Deployable, Self-Righting and Multi-Locomotive Origami Robot
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS
), Vancouver, BC, Sept. 24–28, Paper No. EPFL-CONF-230280.
8.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng.: A
,
419
(
1–2
), pp.
131
137
.
9.
Miyashita
,
S.
,
Guitron
,
S.
,
Ludersdorfer
,
M.
,
Sung
,
C. R.
, and
Rus
,
D.
, “
An Untethered Miniature Origami Robot That Self-Folds, Walks, Swims, and Degrades
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
1490
1496
.
10.
Miyashita
,
S.
,
Guitron
,
S.
,
Yoshida
,
K.
,
Shuguang
,
L.
,
Damian
,
D. D.
, and
Rus
,
D.
, “
Ingestible, Controllable, and Degradable Origami Robot for Patching Stomach Wounds
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
909
916
.
11.
Guitron
,
S.
,
Guha
,
A.
,
Li
,
S.
, and
Rus
,
D.
, “
Autonomous Locomotion of a Miniature, Untethered Origami Robot Using Hall Effect Sensor-Based Magnetic Localization
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29–June 3, pp.
4807
4813
.
12.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Twists
,”
Origami
,
6
(1), pp.
119
130
.https://scholarsarchive.byu.edu/facpub/1606
13.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
JSME Int. J. Ser. C Mech. Syst., Mach. Elem. Manuf.
,
45
(
1
), pp.
364
370
.
14.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
466
(
2119
), pp.
2155
2174
.
15.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spatial Struct.
,
50
(
3
), pp.
173
179
.https://riunet.upv.es/bitstream/handle/10251/6828/PAP_TACHI_2287.pdf?sequence=1
16.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
17.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University Press
,
Cambridge, UK
.
18.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
19.
Zhang
,
K.
,
Fang
,
Y.
,
Fang
,
H.
, and
Dai
,
J. S.
,
2010
, “
Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031014
.
20.
Qiu
,
C.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Repelling-Screw Based Force Analysis of Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031001
.
21.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
22.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2016
, “
A Novel 4-DOF Origami Grasper With an SMA-Actuation System for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
484
498
.
23.
Zhang
,
X.
, and
Chen
,
Y.
,
2018
, “
Mobile Assemblies of Bennett Linkages From Four-Crease Origami Patterns
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
474
(
2210
), p.
20170621
.
24.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
25.
Mitani
,
J.
,
2016
,
3D Origami Art
,
CRC Press
, Boca Raton, FL.
26.
Cipra
,
B.
,
1998
, “
Proving a Link Between Logic and Origami
,”
Science
,
279
(
5352
), pp.
804
805
.
27.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
28.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Gadgets and Tessellations
,”
R. Soc. Open Sci.
,
2
(
9
), p.
150067
.
29.
Bricard
,
R.
,
1897
, “
Mémoire Sur La Théorie De L'octaèdre Articulé
,”
J. Math. Pures Appl. Liouville
,
3
, pp.
113
148
.
30.
Bricard
,
R.
,
1927
,
Leçons de Cinématique, Tome II Cinématique Appliquée
, Gauthier–Villars, Paris, France.
31.
Baker
,
J. E.
,
1993
, “
A Comparative Survey of the Bennett-Based, 6-Revolute Kinematic Loops
,”
Mech. Mach. Theory
,
28
(
1
), pp.
83
96
.
You do not currently have access to this content.