This paper presents a method to minimize the base attitude disturbance of a space robot during target capture. First, a general dynamic model of a free-floating space robot capturing a target is established using spatial operator Algebra, and a simple analytical formula for the base angular velocity change during the impact phase is obtained. Compared with the former models proposed in the literature, this model has a simpler form, a wider range of applications, and O(n) computation complexity. Second, based on the orthogonal projection matrix lemma, we propose the generalized mass Jacobian matrix (GMJM) and find that the base angular velocity change is a constant multiple of the component which the impact impulse projects to the column space of the GMJM. Third, a new concept, the base attitude disturbance ellipsoid (BADE), is proposed to express the relationship between the base attitude disturbance and the impact direction. The impact direction satisfying the minimum base attitude disturbance can be straightforwardly obtained from the BADE. In particular, for a planar space robot, we draw the useful conclusion that the impact direction unchanged base attitude must exist. Furthermore, the average axial length of the BADE is used as a measurement to illustrate the average base attitude disturbance under impact impulses from different directions. With this measurement, the desired pre-impact configuration with minimum average base attitude disturbance can be easily determined. The validity and the efficiency of this method are verified using a three-link planar space robot and a 7DOF space robot.

References

References
1.
Abiko
,
S.
,
Lampariello
,
R.
, and
Hirzinger
,
G.
,
2006
, “
Impedance Control for a Free-Floating Robot in the Ghe Grasping of a Tumbling Target With Parameter Uncertainty
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Beijing, China, Oct. 9–14, pp.
1020
1025
.https://pdfs.semanticscholar.org/882b/923592716a825e618cc64ee1ab6ebfacb744.pdf
2.
Vafa
,
Z.
, and
Dubowsky
,
S.
,
1993
, “
On the Dynamics of Space Manipulators Using the Virtual Manipulator, With Applications to Path Planning
,”
Space Robotics: Dynamics and Control
,
Springer
,
New York
, pp.
45
76
.
3.
Liang
,
B.
,
Xu
,
Y.
, and
Bergerman
,
M.
,
1997
, “
Dynamically Equivalent Manipulator for Space Manipulator System. 1
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Albuquerque, NM, Apr. 20–25, pp.
2765
2770
.
4.
Umetani
,
Y.
, and
Yoshida
,
K.
,
1987
, “
Continuous Path Control of Space Manipulators Mounted on OMV
,”
Acta Astronaut.
,
15
(
12
), pp.
981
986
.
5.
Saha
,
S. K.
,
1996
, “
A Unified Approach to Space Robot Kinematics
,”
IEEE Trans. Rob. Autom.
,
12
(
3
), pp.
401
405
.
6.
Papadopoulos
,
E.
, and
Dubowsky
,
S.
,
1991
, “
On the Nature of Control Algorithms for Free-Floating Space Manipulators
,”
IEEE Trans. Rob. Autom.
,
7
(
6
), pp.
750
758
.
7.
Yoshida
,
K.
,
Sashida
,
N.
,
Kurazume
,
R.
, and
Umetani
,
Y.
,
1992
, “
Modeling of Collision Dynamics for Space Free-Floating Links With Extended Generalized Inertia Tensor
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Nice, France, May 12–14, pp.
899
904
.
8.
Yoshikawa
,
S.
, and
Yamada
,
K.
,
1994
, “
Impact Estimation of a Space Robot at Capturing a Target
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Munich, Germany, Sept. 12-16, pp.
1570
1577
.
9.
Liu
,
S.
,
Wu
,
L.
, and
Lu
,
Z.
,
2007
, “
Impact Dynamics and Control of a Flexible Dual-Arm Space Robot Capturing an Object
,”
Appl. Math. Comput.
,
185
(
2
), pp.
1149
1159
.
10.
Várkonyi
,
P. L.
,
2015
, “
On the Stability of Rigid Multibody Systems With Applications to Robotic Grasping and Locomotion
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041012
.
11.
Zhang
,
M.
, and
Gosselin
,
C.
,
2016
, “
Optimal Design of Safe Planar Manipulators Using Passive Torque Limiters
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011008
.
12.
Wang
,
Q.
,
Quan
,
Q.
,
Deng
,
Z.
, and
Hou
,
X.
,
2016
, “
An Underactuated Robotic Arm Based on Differential Gears for Capturing Moving Targets: Analysis and Design
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041012
.
13.
Ko
,
W. H.
,
Chiang
,
W. H.
,
Hsu
,
Y. H.
,
Yu
,
M. Y.
,
Lin
,
H. S.
, and
Lin
,
P. C.
,
2016
, “
A Model-Based Two-Arm Robot With Dynamic Vertical and Lateral Climbing Behaviors
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
044503
.
14.
Dimitrov
,
D. N.
, and
Yoshida
,
K.
,
2004
, “
Utilization of the Bias Momentum Approach for Capturing a Tumbling Satellite
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Sendai, Japan, Sept. 28–Oct. 2, pp.
3333
3338
.
15.
Dimitrov
,
D. N.
, and
Yoshida
,
K.
,
2004
, “
Momentum Distribution in a Space Manipulator for Facilitating the Post-Impact Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Sendai, Japan, Sept. 28–Oct. 2, pp.
3345
3350
.
16.
Huang
,
P.
,
Xu
,
Y.
, and
Liang
,
B.
,
2006
, “
Dynamic Balance Control of Multi-Arm Free-Floating Space Robots
,”
Int. J. Adv. Rob. Syst.
,
2
(
2
), pp.
117
124
.
17.
Gan
,
D.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
,
Caldwell
,
D. G.
, and
Seneviratne
,
L.
,
2013
, “
Stiffness Design for a Spatial Three Degrees of Freedom Serial Compliant Manipulator Based on Impact Configuration Decomposition
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011002
.
18.
Yoshida
,
K.
, and
Sashida
,
N.
,
1993
, “
Modeling of Impact Dynamics and Impulse Minimization for Space Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Yokohama, Japan, July 26–30, pp.
2064
2069
.
19.
Yoshida
,
K.
, and
Nenchev
,
D. N.
,
1995
, “
Space Robot Impact Analysis and Satellite-Base Impulse Minimization Using Reaction Null-Space
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Nagoya, Japan, May 21–27, pp.
1271
1277
.
20.
Nenchev
,
D. N.
, and
Yoshida
,
K.
,
1999
, “
Impact Analysis and Post-Impact Motion Control Issues of a Free-Floating Space Robot Subject to a Force Impulse
,”
IEEE Trans. Rob. Autom.
,
15
(
3
), pp.
548
557
.
21.
Cong
,
P. C.
, and
Sun
,
Z. W.
,
2008
, “
Pre-Impact Configuration Planning for Capture Object of Space Manipulator
,”
Second International Symposium on Systems and Control in Aerospace and Astronautics
, Shenzhen, China, Dec. 10–12, pp.
1
6
.
22.
Rodriguez
,
G.
,
1987
, “
Kalman Filtering, Smoothing, and Recursive Robot Arm Forward and Inverse Dynamics
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
624
639
.
23.
Rodriguez
,
G.
,
Jain
,
A.
, and
Kreutz-Delgado
,
K.
,
1992
, “
Spatial Operator Algebra for Multibody System Dynamics
,”
J. Astronaut. Sci.
,
40
(
1
), pp.
27
50
.http://dsp.ucsd.edu/~kreutz/Publications/rodriguez1992spatial-b.pdf
24.
Jain
,
A.
, and
Rodriguez
,
G.
,
1992
, “
Recursive Flexible Multibody System Dynamics Using Spatial Operators
,”
J. Guid., Control, Dyn.
,
15
(
6
), pp.
1453
1466
.
You do not currently have access to this content.