This study presents a topology optimization method to synthesize an innovative compliant finger for grasping objects with size and shape variations. The design domain of the compliant finger is a trapezoidal area with one input and two output ports. The topology optimized finger design is prototyped by three-dimensional (3D) printing using flexible filament, and be used in the developed gripper module, which consists of one actuator and two identical compliant fingers. Both fingers are actuated by one displacement input, and can grip objects through elastic deformation. The gripper module is mounted on an industrial robot to pick and place a variety of objects to demonstrate the effectiveness of the proposed design. The results show that the developed compliant finger can be used to handle vulnerable objects without causing damage to the surface of grasped items. The proposed compliant finger is a monolithic and low-cost design, which can be used to resolve the challenge issue for robotic automation of irregular and vulnerable objects.

References

References
1.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization—III: Topology Optimization Using Optimality Criteria
,”
Comput. Struct.
,
69
(
6
), pp.
739
756
.
2.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
.
3.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
217
237
.
4.
Huang
,
X.
, and
Xie
,
Y. M.
,
2010
, “
A Further Review of ESO Type Methods for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
41
(
5
), pp.
671
683
.
5.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
6.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
437
472
.
7.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscip. Optim.
,
49
(
1
), pp.
1
38
.
8.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
,
16
(
1
), pp.
68
75
.
9.
Zhou
,
M.
,
Shyy
,
Y. K.
, and
Thomas
,
H. L.
,
2001
, “
Checkerboard and Minimum Member Size Control in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
152
158
.
10.
Jang
,
G.-W.
,
Jeong
,
J. H.
,
Kim
,
Y. Y.
,
Sheen
,
D.
,
Park
,
C.
, and
Kim
,
M.-N.
,
2003
, “
Checkerboard-Free Topology Optimization Using Non-Conforming Finite Elements
,”
Int. J. Numer. Methods Eng.
,
57
(
12
), pp.
1717
1735
.
11.
Huang
,
X.
, and
Xie
,
Y. M.
,
2007
, “
Convergent and Mesh-Independent Solutions for the Bi-Directional Evolutionary Structural Optimization Method
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1039
1049
.
12.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
33
(
4–5
), pp.
401
424
.
13.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
(
4
), pp.
493
524
.
14.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
.
15.
Rahmatalla
,
S.
, and
Swan
,
C. C.
,
2005
, “
Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
62
(
12
), pp.
1579
1605
.
16.
Deepak
,
S. R.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2008
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.
17.
Wang
,
M. Y.
,
2009
, “
Mechanical and Geometric Advantages in Compliant Mechanism Optimization
,”
Front. Mech. Eng. China
,
4
(3), pp.
229
241
.
18.
Zhou
,
H.
,
2010
, “
Topology Optimization of Compliant Mechanisms Using Hybrid Discretization Model
,”
ASME J. Mech. Des.
,
132
(
11
), p.
111003
.
19.
Zhou
,
H.
, and
Killekar
,
P. P.
,
2011
, “
The Modified Quadrilateral Discretization Model for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111007
.
20.
Alonso
,
C.
,
Querin
,
O. M.
, and
Ansola
,
R.
,
2013
, “
A Sequential Element Rejection and Admission (SERA) Method for Compliant Mechanisms Design
,”
Struct. Multidiscip. Optim.
,
47
(
6
), pp.
795
807
.
21.
Alonso
,
C.
,
Ansola
,
R.
, and
Querin
,
O. M.
,
2014
, “
Topology Synthesis of Multi-Material Compliant Mechanisms With a Sequential Element Rejection and Admission Method
,”
Finite Elem. Anal. Des.
,
85
, pp.
11
19
.
22.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031007
.
23.
Cao
,
L.
,
Dolovich
,
A. T.
, and
Zhang
,
W.
,
2015
, “
Hybrid Compliant Mechanism Design Using a Mixed Mesh of Flexure Hinge Elements and Beam Elements Through Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092303
.
24.
Liu
,
C.-H.
, and
Huang
,
G.-F.
,
2016
, “
A Topology Optimization Method With Constant Volume Fraction During Iterations for Design of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
044505
.
25.
Liu
,
C.-H.
,
Huang
,
G.-F.
, and
Chen
,
T.-L.
,
2017
, “
An Evolutionary Soft-Add Topology Optimization Method for Synthesis of Compliant Mechanisms With Maximum Output Displacement
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
054502
.
26.
Krishnakumar
,
A.
, and
Suresh
,
K.
,
2015
, “
Hinge-Free Compliant Mechanism Design Via the Topological Level-Set
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031406
.
27.
Pedersen
,
C. B. W.
,
Fleck
,
N. A.
, and
Ananthasuresh
,
G. K.
,
2006
, “
Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1101
1112
.
28.
Jin
,
M.
, and
Zhang
,
X.
,
2016
, “
A New Topology Optimization Method for Planar Compliant Parallel Mechanisms
,”
Mech. Mach.
,
95
, pp.
42
58
.
29.
Yoon
,
G. H.
,
2012
, “
Topological Layout Design of Electro-Fluid-Thermal-Compliant Actuator
,”
Comput. Methods Appl. Mech. Eng.
,
209–212
, pp.
28
44
.
30.
Gonçalves
,
J. F.
,
De Leon
,
D. M.
, and
Perondi
,
E. A.
,
2017
, “
Topology Optimization of Embedded Piezoelectric Actuators Considering Control Spillover Effects
,”
J. Sound Vib.
,
388
, pp.
20
41
.
31.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
32.
Lu
,
K.-J.
, and
Kota
,
S.
,
2006
, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1080
1091
.
33.
Petković
,
D.
,
Pavlović
,
N. D.
,
Shamshirband
,
S.
, and
Anuar
,
N. B.
,
2013
, “
Development of a New Type of Passively Adaptive Compliant Gripper
,”
Ind. Rob.: An Int. J.
,
40
(
6
), pp.
610
623
.
34.
Liu
,
C.-H.
,
Huang
,
G.-F.
,
Chiu
,
C.-H.
, and
Pai
,
T.-Y.
,
2017
, “
Topology Synthesis and Optimal Design of an Adaptive Compliant Gripper to Maximize Output Displacement
,”
J. Intell. Rob. Syst.
, epub.
35.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
36.
Midha
,
A.
, and
Howell
,
L. L.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
37.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
38.
Midha
,
A.
, and
Howell
,
L. L.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
126
131
.
39.
Doria
,
M.
, and
Birglen
,
L.
,
2009
, “
Design of an Underactuated Compliant Gripper for Surgery Using Nitinol
,”
ASME J. Med. Devices
,
3
(
1
), p.
011007
.
40.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive SDM Hand-Design and Performance Evaluation
,”
Int. J. Rob. Res.
,
29
(
5
), pp.
585
597
.
41.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
161
185
.
42.
Manti
,
M.
,
Hassan
,
T.
,
Passetti
,
G.
,
D'Elia
,
N.
,
Laschi
,
C.
, and
Cianchetti
,
M.
,
2015
, “
A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping
,”
Soft Rob.
,
2
(
3
), pp.
107
116
.
43.
Katzschmann
,
R. K.
,
Marchese
,
A. D.
, and
Rus
,
D.
,
2015
, “
Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator
,”
Soft Rob.
,
2
(
4
), pp.
155
164
.
44.
Marchese
,
A. D.
,
Katzschmann
,
R. K.
, and
Rus
,
D.
,
2015
, “
A Recipe for Soft Fluidic Elastomer Robots
,”
Soft Rob.
,
2
(
1
), pp.
7
25
.
45.
Galloway
,
K. C.
,
Becker
,
K. P.
,
Phillips
,
B.
,
Kirby
,
J.
,
Licht
,
S.
,
Tchernov
,
D.
,
Wood
,
R. J.
, and
Gruber
,
D. F.
,
2016
, “
Soft Robotic Grippers for Biological Sampling on Deep Reefs
,”
Soft Rob.
,
3
(
1
), pp.
23
33
.
46.
Chua
,
P. Y.
,
Ilschner
,
T.
, and
Caldwell
,
D. G.
,
2003
, “
Robotic Manipulation of Food Products—A Review
,”
Ind. Robot: An Int. J
,
30
(
4
), pp.
345
354
.
47.
Pettersson
,
A.
,
Davis
,
S.
,
Gray
,
J. O.
,
Dodd
,
T. J.
, and
Ohlsson
,
T.
,
2010
, “
Design of a Magnetorheological Robot Gripper for Handling of Delicate Food Products With Varying Shapes
,”
J. Food Eng.
,
98
(
3
), pp.
332
338
.
48.
Pettersson
,
A.
,
Ohlsson
,
T.
,
Davis
,
S.
,
Gray
,
J. O.
, and
Dodd
,
T. J.
,
2011
, “
A Hygienically Designed Force Gripper for Flexible Handling of Variable and Easily Damaged Natural Food Products
,”
Innovative Food Sci. Emerging Technol.
,
12
(
3
), pp.
344
351
.
49.
Blanes
,
C.
,
Mellado
,
M.
,
Ortiz
,
C.
, and
Valera
,
A.
,
2011
, “
Technologies for Robot Grippers in Pick and Place Operations for Fresh Fruits and Vegetables
,”
Span. J. Agric. Res.
,
9
(
4
), pp.
1130
1141
.
50.
Blanes
,
C.
,
Ortiz
,
C.
,
Mellado
,
M.
, and
Beltrán
,
P.
,
2015
, “
Assessment of Eggplant Firmness With Accelerometers on a Pneumatic Robot Gripper
,”
Comput. Electron. Agric.
,
113
, pp.
44
50
.
51.
Russo
,
M.
,
Ceccarelli
,
M.
,
Corves
,
B.
,
Hüsing
,
M.
,
Lorenz
,
M.
,
Cafolla
,
D.
, and
Carbone
,
G.
,
2017
, “
Design and Test of a Gripper Prototype for Horticulture Products
,”
Rob. Comput. Integ. Manuf.
,
44
, pp.
266
275
.
52.
Lee
,
K.-M.
,
2001
, “
Design Criteria for Developing an Automated Live-Bird Transfer System
,”
IEEE Trans. Rob. Autom.
,
17
(
4
), pp.
483
490
.
53.
Lan
,
C.-C.
, and
Lee
,
K.-M.
,
2008
, “
An Analytical Contact Model for Design of Compliant Fingers
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011008
.
54.
Liu
,
C.-H.
, and
Lee
,
K.-M.
,
2012
, “
Dynamic Modeling of Damping Effects in Highly Damped Compliant Fingers for Applications Involving Contacts
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
1
), p.
011005
.
55.
Lee
,
K.-M.
, and
Liu
,
C.-H.
,
2012
, “
Explicit Dynamic Finite Element Analysis of an Automated Grasping Process Using Highly Damped Compliant Fingers
,”
Comput. Math. Appl.
,
64
(
5
), pp.
965
977
.
You do not currently have access to this content.