Capturing noncooperative targets in space has great prospects for aerospace application. In this work, the knuckle unit of a large-scale reconfigurable space multifingered hand (LSRSMFH) for multitask requirements is studied. A plurality of knuckle units is connected in series to form a finger of the LSRSMFH. First, the lockable spherical (lS) joint, a new metamorphic joint that can function as a Hooke (lS1) or spherical (lS2) joint and is driven by shape memory alloy (SMA) material, is proposed. Based on the lS joint, this paper presents a new metamorphic parallel mechanism (MPM) (i.e., 3RRlS MPM), which has four configurations, namely, 3RRlS1, 3RRlS2, 2RRlS1-RRlS2, and 2RRlS2-RRlS1 configuration. The degree-of-freedom (DOF), overconstraint, and parasitic motion of the 3RRlS MPM are analyzed using screw theory, of which the DOF can be changed from 1 to 3. The 3RRlS1 configuration has a virtual constraint, and the 3RRlS2 configuration has parasitic motions. The results indicate that the mechanism motion screws can qualitatively represent the mechanism parasitic motions, and it is verified by deriving the kinematic equation of the 3RRlS MPM based on its spatial geometric conditions, the workspace of the 3RRlS MPM is further solved. The kinematic analysis indicates that the 3RRlS MPM can realize the folding, capturing, and reconfiguring conditions of the LSRSMFH.

References

References
1.
Alexander
,
J. D.
, and
Young
,
K. A.
,
1970
, “
Apollo Lunar Rendezvous
,”
J. Spacecr. Rockets
,
7
(
9
), pp.
1083
1086
.
2.
Polites
,
M. E.
,
1999
, “
Technology of Automated Rendezvous and Capture in Space
,”
J. Spacecr. Rockets
,
36
(
2
), pp.
280
291
.
3.
Slysh
,
P.
, and
Kugath
,
D. A.
,
1980
, “
Large Space Structure Automated Assembly Technique
,”
J. Spacecr. Rockets
,
17
(
4
), pp.
354
362
.
4.
Boumans
,
R.
, and
Heemskerk
,
C.
,
1998
, “
The European Robotic Arm for the International Space Station
,”
Rob. Auton. Syst.
,
23
(
1–2
), pp.
17
27
.
5.
Oda
,
M.
,
1999
, “
Space Robot Experiments on NASDA's ETS-VII Satellite-Preliminary Overview of the Experiment Results
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Detroit, MI, May 10–15, pp.
1390
1395
.
6.
Bosse
,
A. B.
,
Barnds
,
W. J.
,
Brown
,
M. A.
,
Creamer
,
N. G.
,
Feerst
,
A.
,
Henshaw
,
C. G.
, and
Plourde
,
B. E.
,
2004
, “
SUMO: Spacecraft for the Universal Modification of Orbits
,”
Proc. SPIE
,
5419
, p.
37
.
7.
Debus
,
T. J.
, and
Dougherty
,
S. P.
,
2009
, “
Overview and Performance of the Front-End Robotics Enabling Near-Term Demonstration (FREND) Robotic Arm
,”
AIAA
Paper No. 2009-1870.
8.
Kassebom, M.
, 2003, “
Roger—An Advanced Solution for a Geostationary Service Satellite
,” 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany, Paper No.
IAC-03-U.1.02
.
9.
Bischof, B.
, 2003, “
Roger—Robotic Geostationary Orbit Restorer
,” 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany, Paper No.
IAC-03-IAA.5.2.08
.
10.
Nakasuka
,
S.
,
Aoki
,
T.
,
Ikeda
,
I.
,
Tsuda
,
Y.
, and
Kawakatsu
,
Y.
,
2001
, “
‘Furoshiki Satellite’-A Large Membrane Structure as a Novel Space System
,”
Acta Astronaut.
,
48
(
5–12
), pp.
461
468
.
11.
Hoyt
,
R. P.
,
Cushing
,
J. I.
,
Slostad
,
J. T.
,
Jimmerson
,
G.
,
Moser
,
T.
,
Kirkos
,
G.
, and
Voronka
,
N. R.
,
2013
, “
SpiderFab: An Architecture for Self-Fabricating Space Systems
,”
AIAA
Paper No. 2013-5509.
12.
Lee
,
N.
,
Backes
,
P.
,
Burdick
,
J.
,
Pellegrino
,
S.
,
Fuller
,
C.
,
Hogstrom
,
K.
, and
Wu
,
Y. H.
,
2016
, “
Architecture for in-Space Robotic Assembly of a Modular Space Telescope
,”
J. Astron. Telesc., Instrum., Syst.
,
2
(
4
), p.
041207
.
13.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2013
, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031004
.
14.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech. Transm. Autom. Des.
,
105
(
4
), pp.
705
712
.
15.
Li
,
Q.
, and
Huang
,
Z.
,
2003
, “
Type Synthesis of 4-DOF Parallel Manipulators
,”
IEEE International Conference Robotics and Automation
(
ICRA'03
), Taipei, Taiwan, Sept. 14–19, pp.
755
760
.
16.
Li
,
Q.
,
Huang
,
Z.
, and
Hervé
,
J. M.
,
2004
, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
173
180
.
17.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2010
, “
Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1864
1876
.
18.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
19.
Yan
,
H. S.
, and
Kuo
,
C. H.
,
2006
, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
384
391
.
20.
Kong
,
X.
,
Gosselin
,
C. M.
, and
Richard
,
P. L.
,
2007
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.
21.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
22.
Gan
,
D.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Unified Kinematics and Optimal Design of a 3rRPS Metamorphic Parallel Mechanism With a Reconfigurable Revolute Joint
,”
Mech. Mach. Theory
,
96
, pp.
239
254
.
23.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121001
.
24.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2013
, “
Geometric Constraint and Mobility Variation of Two 3 SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.
25.
Jin
,
G.
, and
Chang
,
B.
,
2012
, “
Configuration Change and Mobility Analysis of a New Metamorphic Parallel Mechanism Used for Bionic Joint
,”
Advances in Reconfigurable Mechanisms and Robots I
,
Springer
,
London
, pp.
333
342
.
26.
Zhang
,
W. X.
,
Wu
,
T.
, and
Ding
,
X. L.
,
2014
, “
An Optimization Method for a Novel Parallel Metamorphic Mechanism
,”
11th World Congress Intelligent Control and Automation
(
WCICA
), Shenyang, China, June 29–July 4, pp.
3642
3647
.
27.
Palpacelli
,
M. C.
,
Carbonari
,
L.
, and
Palmieri
,
G.
,
2016
, “
Details on the Design of a Lockable Spherical Joint for Robotic Applications
,”
J. Intell. Rob. Syst.
,
81
(
2
), p.
169
.
28.
Aghili
,
F.
, and
Parsa
,
K.
,
2009
, “
A Reconfigurable Robot With Lockable Cylindrical Joints
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
785
797
.
29.
Zhang
,
X.
,
Yan
,
X.
, and
Yang
,
Q.
,
2014
, “
Design and Experimental Validation of Compact, Quick-Response Shape Memory Alloy Separation Device
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011009
.
30.
Grulich
,
M.
,
Koop
,
A.
,
Ludewig
,
P.
,
Gutsmiedl
,
J.
,
Kugele
,
J.
,
Ruck
,
T.
, …
Dietmann
,
K.
,
2015
, “
Smard-Rexus-18: Development and Verification of an SMA Based Cubesat Solar Panel Deployment Mechanism
,”
22nd ESA Symposium European Rocket & Balloon Programmes and Related Research
, Tromso, Norway, June 7–12, pp.
7
12
.https://www.researchgate.net/publication/286383510_SMARD-REXUS-18_DEVELOPMENT_AND_VERIFICATION_OF_AN_SMA_BASED_CUBESAT_SOLAR_PANEL_DEPLOYMENT_MECHANISM
31.
Zhang
,
X.
,
Yan
,
X.
,
Zhang
,
S.
, and
Nie
,
J.
,
2014
, “
Development of a Novel Shape Memory Alloy-Actuated Resettable Locking Device for Magnetic Bearing Reaction Wheel
,”
Rev. Sci. Instrum.
,
85
(
1
), p.
015006
.
32.
Liang
,
C.
, and
Rogers
,
C. A.
,
1992
, “
Design of Shape Memory Alloy Actuators
,”
ASME J. Mech. Des.
,
114
(
2
), pp.
223
230
.
33.
Song
,
Y.
,
Lian
,
B.
,
Sun
,
T.
,
Dong
,
G.
,
Qi
,
Y.
, and
Gao
,
H.
,
2014
, “
A Novel Five-Degree-of-Freedom Parallel Manipulator and Its Kinematic Optimization
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041008
.
34.
Song
,
Y.
,
Gao
,
H.
,
Sun
,
T.
,
Dong
,
G.
,
Lian
,
B.
, and
Qi
,
Y.
,
2014
, “
Kinematic Analysis and Optimal Design of a Novel 1T3R Parallel Manipulator With an Articulated Travelling Plate
,”
Rob. Comput.-Integr. Manuf.
,
30
(
5
), pp.
508
516
.
35.
Carretero
,
J. A.
,
Podhorodeski
,
R. P.
,
Nahon
,
M. A.
, and
Gosselin
,
C. M.
,
2000
, “
Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
17
24
.
36.
Li
,
Q.
,
Chen
,
Z.
,
Chen
,
Q.
,
Wu
,
C.
, and
Hu
,
X.
,
2011
, “
Parasitic Motion Comparison of 3-PRS Parallel Mechanism With Different Limb Arrangements
,”
Rob. Comput.-Integr. Manuf.
,
27
(
2
), pp.
389
396
.
37.
Qi
,
Y.
,
Sun
,
T.
, and
Song
,
Y.
,
2017
, “
Type Synthesis of Parallel Tracking Mechanism With Varied Axes by Modeling Its Finite Motions Algebraically
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
054504
.
You do not currently have access to this content.