Multifingered hands have the capability of dexterous manipulation of grasped objects and thus significantly increase the capabilities of a robot equipped with multifingered hands. Inspired by a multijointed human finger and the hand, we propose a six degree-of-freedom (DOF) model of a three-fingered robotic hand as a parallel manipulator. Two kinds of contact, namely point contact with friction and rolling without slipping between the fingertips and the grasped object, are considered. The point contact with friction is modeled as a three DOF spherical joint, and for rolling without slipping, we use the resultant nonholonomic constraints between the grasped object and the fingers. With realistic limits on the joints in the fingers and dimensions of finger segments, we obtain the well-conditioned manipulation workspace of the parallel manipulator using a Monte Carlo-based method. Additionally, we present two new general results—it is shown that maximum position and orientation workspace is obtained when the cross-sectional area of the grasped object is approximately equal to the area of the palm of the hand and when rolling without slipping is ensured the size of the well-conditioned workspace is significantly larger (1.21.5 times). We also present representative experiments of manipulation by a human hand and show that the experimental results are in reasonable agreement with those obtained from simulations.

References

References
1.
Ritter
,
H.
, and
Haschke
,
R.
,
2014
, “
Hands, Dexterity, and the Brain
,”
Humanoid Robotics and Neuroscience: Science, Engineering and Society
,
CRC Press
, Boca Raton, FL, pp.
49
77
.
2.
Balasubramanian
,
R.
, and
Santos
,
V. J.
,
2014
,
The Human Hand as an Inspiration for Robot Hand Development
, Vol.
95
,
Springer
, Cham, Switzerland.
3.
Okamura
,
A. M.
,
Smaby
,
N.
, and
Cutkosky
,
M. R.
, “
An Overview of Dexterous Manipulation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 24–28, pp.
255
262
.
4.
Hanafusa
,
H.
, and
Asada
,
H.
,
1977
, “
A Robot Hand With Elastic Fingers and Its Application to Assembly Process
,”
IFAC Symposium on Information Control Problems in Manufacturing Technology
, Tokyo, Japan, Oct. 17–20, pp.
127
134
.
5.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Rob. Res.
,
1
(
1
), pp.
4
17
.
6.
Jacobsen
,
S.
,
Iversen
,
E.
,
Knutti
,
D.
,
Johnson
,
R.
, and
Biggers
,
K.
,
1986
, “
Design of the Utah/MIT Dextrous Hand
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 7–10, pp.
1520
1532
.
7.
Murray
,
R. M.
, and
Sastry
,
S. S.
,
1989
, “
Control Experiments in Planar Manipulation and Grasping
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Scottsdale, AZ, May 14–19, pp.
624
629
.
8.
Butterfaß
,
J.
,
Grebenstein
,
M.
,
Liu
,
H.
, and
Hirzinger
,
G.
,
2001
, “
DLR-Hand II: Next Generation of a Dextrous Robot Hand
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
109
114
.
9.
Shadow Robot
,
2013
, “Shadow Hand,” Shadow Robot Company, London, accessed Mar. 15, 2017, https://www.shadowrobot.com/products/dexterous-hand/
10.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
161
185
.
11.
Deshpande
,
A. D.
, and
Matsuoka
,
Y.
,
2014
, “
Development of an Anatomically Correct Testbed (ACT) Hand
,”
The Human Hand as an Inspiration for Robot Hand Development
,
Springer
, Cham, Switzerland, pp.
453
475
.
12.
Lin
,
J.
,
Wu
,
Y.
, and
Huang
,
T. S.
,
2000
, “
Modeling the Constraints of Human Hand Motion
,”
IEEE
Workshop on Human Motion, Los Alamitos, CA, Dec. 7–8, pp.
121
126
.
13.
Dizioğlu
,
B.
, and
Lakshiminarayana
,
K.
,
1984
, “
Mechanics of Form Closure
,”
Acta Mech.
,
52
(
1
), pp.
107
118
.
14.
Nguyen
,
V.-D.
,
1987
, “
Constructing Stable Grasps in 3D
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Raleigh, NC, Mar. 31–Apr. 3, pp.
234
239
.
15.
Montana
,
D. J.
,
1988
, “
The Kinematics of Contact and Grasp
,”
Int. J. Rob. Res.
,
7
(
3
), pp.
17
32
.
16.
Cai
,
C. S.
, and
Roth
,
B.
,
1986
, “
On the Planar Motion of Rigid Bodies With Point Contact
,”
Mech. Mach. Theory
,
21
(
6
), pp.
453
466
.
17.
Kerr
,
J.
, and
Roth
,
B.
,
1986
, “
Analysis of Multifingered Hands
,”
Int. J. Rob. Res.
,
4
(
4
), pp.
3
17
.
18.
Borràs
,
J.
, and
Dollar
,
A. M.
,
2015
, “
Dimensional Synthesis of Three-Fingered Robot Hands for Maximal Precision Manipulation Workspace
,”
Int. J. Rob. Res.
,
34
(
14
), pp.
1731
1746
.
19.
Cobos
,
S.
,
Ferre
,
M.
,
Uran
,
M. S.
,
Ortego
,
J.
, and
Pena
,
C.
,
2008
, “
Efficient Human Hand Kinematics for Manipulation Tasks
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
2008), Nice, France, Sept. 22–26, pp.
2246
2251
.
20.
Dunn
,
W. L.
, and
Shultis
,
J. K.
,
2011
,
Exploring Monte Carlo Methods
,
Elsevier
, Amsterdam, The Netherlands.
21.
Stamper
,
R. E.
,
Tsai
,
L.-W.
, and
Walsh
,
G. C.
,
1997
, “
Optimization of a Three DOF Translational Platform for Well-Conditioned Workspace
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Albuquerque, NM, Apr. 20–25, pp.
3250
3255
.
22.
Chaudhury
,
A. N.
, and
Ghosal
,
A.
,
2017
, “
Optimum Design of Multi-Degree-of-Freedom Closed-Loop Mechanisms and Parallel Manipulators for a Prescribed Workspace Using Monte Carlo Method
,”
Mech. Mach. Theory
,
118
, pp.
115
138
.
23.
Fishman
,
G.
,
2013
,
Monte Carlo: Concepts, Algorithms, and Applications
,
Springer Science & Business Media
, New York.
24.
Selig
,
J. M.
,
2004
,
Geometric Fundamentals of Robotics
,
Springer Science & Business Media
, New York.
25.
Edelsbrunner
,
H.
, and
Mücke
,
E. P.
,
1994
, “
Three-Dimensional Alpha Shapes
,”
ACM Trans. Graph.
,
13
(
1
), pp.
43
72
.
26.
Lee
,
D.-T.
, and
Schachter
,
B. J.
,
1980
, “
Two Algorithms for Constructing a Delaunay Triangulation
,”
Int. J. Comput. Inf. Sci.
,
9
(
3
), pp.
219
242
.
27.
Artec3D
, 2018, “Artec Eva Scanner,” Artec Europe, Luxembourg, UK, accessed Mar. 15, 2017, https://www.artec3d.com/3d-scanner/artec-eva
28.
Nakamura
,
M.
,
Miyawaki
,
C.
,
Matsushita
,
N.
,
Yagi
,
R.
, and
Handa
,
Y.
,
1998
, “
Analysis of Voluntary Finger Movements During Hand Tasks by a Motion Analyzer
,”
J. Electromyography Kinesiology
,
8
(
5
), pp.
295
303
.
29.
Chaudhury
,
A. N.
, and
Ghosal
,
A.
,
2017
, “
Determination of Workspace Volume of Parallel Manipulators Using Monte Carlo Method
,”
Computational Kinematics
,
Springer
, Cham, Switzerland, pp.
323
330
.
30.
Degeorges
,
R.
, and
Oberlin
,
C.
,
2003
, “
Measurement of Three-Joint-Finger Motions: Reality or Fancy? A Three-Dimensional Anatomical Approach
,”
Surg. Radiol. Anat.
,
25
(
2
), pp.
105
112
.
31.
Degeorges
,
R.
,
Laporte
,
S.
,
Pessis
,
E.
,
Mitton
,
D.
,
Goubier
,
J.-N.
, and
Lavaste
,
F.
,
2004
, “
Rotations of Three-Joint Fingers: A Radiological Study
,”
Surg. Radiol. Anat.
,
26
(
5
), pp.
392
398
.
32.
Autodesk
,
2013
, “Autodesk-Netfabb Version 7.4.0 532(2013),”
Autodesk
,
Mill Valley, CA
.
33.
Cole
,
A. B.
,
Hauser
,
J. E.
, and
Sastry
,
S. S.
,
1989
, “
Kinematics and Control of Multifingered Hands With Rolling Contact
,”
IEEE Trans. Autom. Control
,
34
(
4
), pp.
398
404
.
34.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
35.
Ghosal
,
A.
,
2006
,
Robotics: Fundamental Concepts and Analysis
,
Oxford University Press
, New Delhi.
36.
Ghosal
,
A.
, and
Ravani
,
B.
,
2001
, “
A Differential-Geometric Analysis of Singularities of Point Trajectories of Serial and Parallel Manipulators
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
80
89
.
37.
Bardinet
,
E.
,
Ayache
,
N.
, and
Cohen
,
L.
,
1994
, “
Fitting of Iso-Surfaces Using Super-Quadrics and Free-Form Deformations
,”
IEEE Workshop on Biomedical Image Analysis
(
BIA
), Seattle, WA, June 24–25, pp.
184
193
.
38.
Solina
,
F.
, and
Bajcsy
,
R.
,
1990
, “
Recovery of Parametric Models From Range Images: The Case for Super-Quadrics With Global Deformations
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
12
(
2
), pp.
131
147
.
39.
Menon
,
M. S.
,
Ravi
,
V.
, and
Ghosal
,
A.
,
2017
, “
Trajectory Planning and Obstacle Avoidance for Hyper-Redundant Serial Robots
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041010
.
40.
Barr
,
A. H.
,
1992
, “Rigid Physically Based Super-Quadrics,” Graphics Gems III (IBM Version), D. Kirk, ed.,
Academic Press, San Diego, CA
, pp.
137
159
.
41.
Taubin
,
G.
,
1993
, “
An Improved Algorithm for Algebraic Curve and Surface Fitting
,”
IEEE Fourth International Conference on Computer Vision
(
ICCV
), Berlin, May 11–14, pp.
658
665
.
42.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
, New York.
43.
Agarwal
,
S.
,
Srivatsan
,
R. A.
, and
Bandyopadhyay
,
S.
,
2016
, “
Analytical Determination of the Proximity of Two Right-Circular Cylinders in Space
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041010
.
44.
Moore
,
M.
, and
Wilhelms
,
J.
,
1988
, “
Collision Detection and Response for Computer Animation
,”
ACM Siggraph Computer Graphics
, Vol.
22
,
ACM
, New York, pp.
289
298
.
45.
Wellmann
,
C.
,
Lillie
,
C.
, and
Wriggers
,
P.
,
2008
, “
A Contact Detection Algorithm for Super-Ellipsoids Based on the Common-Normal Concept
,”
Eng. Comput.
,
25
(
5
), pp.
432
442
.
46.
Howe
,
R. D.
,
Kao
,
I.
, and
Cutkosky
,
M. R.
,
1988
, “
The Sliding of Robot Fingers Under Combined Torsion and Shear Loading
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Philadelphia, PA, Apr. 24–29, pp.
103
105
.
47.
MathWorks
,
2015
, “MATLAB Version 8.5.0.197613 (R2015a),”
The MathWorks Inc
.,
Natick, MA
.
48.
Polhemus-Liberty
,
2018
, “Polhemus-Liberty Wired Electromagnetic Position and Orientation Tracker,” Polhemus-Liberty, Colchester, VT, accessed Apr. 22, 2017, http://polhemus.com/motion-tracking/all-trackers/liberty
49.
Tracey
,
B. H.
, and
Miller
,
E. L.
,
2012
, “
Nonlocal Means Denoising of ECG Signals
,”
IEEE Trans. Biomed. Eng.
,
59
(
9
), pp.
2383
2386
.
50.
White
,
R. M.
,
1980
, “Comparative Anthropometry of the Hand,” DTIC Document, Natick, MA, Technical Report No. NATICK/TR-81/010.
51.
Manning
,
J. T.
,
2012
, “
Sex Differences and Age Changes in Digit Ratios: Implications for the Use of Digit Ratios in Medicine and Biology
,”
Handbook of Anthropometry
,
Springer
, New York, pp.
841
851
.
52.
Arora
,
J.
,
2004
,
Introduction to Optimum Design
,
Academic Press
, San Diego, CA, pp.
154
157
.
This content is only available via PDF.
You do not currently have access to this content.