In the deployable mechanism for a conventional truss antenna, the nodes cannot be adjusted to be uniform in attitude. To solve this problem, a method of adding constraint chains is proposed based on the reciprocal screw theory. By performing type synthesis of the deployable mechanisms for the truss antenna, a novel deployable mechanism is developed that not only enables complete folding and unfolding but also allows the attitude of the nodes to be made uniform. First, according to the unit division of the antenna reflection surface and the characteristic motions of the nodes, constraint chains that can be added between two adjacent nodes are synthesized based on the reciprocal screw theory. Second, to improve the overall rigidity of the mechanism, a series of basic developable unit mechanisms is obtained by adding virtual constraint chains, again based on the reciprocal screw theory. Next, a method of dividing the minimum combination unit of the curved-surface antenna mechanism is proposed. The design of the minimum combination unit mechanism is optimized, such that the attitude of all nodes in the final folded state can be made consistent. Finally, the feasibility of the optimized minimum combination unit mechanism is verified by simulation analysis. The proposed method for type synthesis provides a new approach to the design of deployable mechanisms for truss antennas, and novel deployable mechanisms for the curved-surface truss antenna with better performance are obtained.

References

References
1.
Wohlhart
,
K.
,
2008
, “
New Polyhedral Star Linkages
,”
Tenth International Conference on the Theory of Machines and Mechanisms
, Liberec, Czech, Sept. 2–4, pp. 715–720.
2.
Gosselin
,
C. M.
, and
Gagnon-Lachance
,
D.
,
2006
, “
Expandable Polyhedral Mechanisms Based on Polygonal One-Degree-of-Freedom Faces
,”
Proc. IMechE Part C: J. Mec. Eng. Sci.
,
220
(
7
), pp.
1011
1018
.
3.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
.
4.
Agrawal
,
S. K.
,
Kumar
,
S.
, and
Yim
,
M.
,
2002
, “
Polyhedral Single Degree-of-Freedom Expanding Structures: Design and Prototypes
,”
ASME J. Mech. Des
,
124
(
3
), pp.
473
478
.
5.
Herr
,
R. W.
, and
Horner
,
G. C.
,
1980
, “Deployment Test of a 36-Element Tetrahedral Truss Module,” Second Annual Technical Review, Vought Corp, Dallas TX, Paper No.
NASA-CP-2168-V-1
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810010674.pdf
6.
Zhang
,
W.
, and
Lin
,
Y. G.
,
2015
, “
Application Preliminary Evaluation of HJ-1-C SAR Satellite of S Band
,”
SPIE Proc.
,
2015
, p. 98151A.
7.
Cherniavsky
,
A. G.
,
Gulyayev
,
V. I.
,
Gaidaichuk
,
V. V.
, and
Fedoseev
,
A. I.
,
2005
, “
Large Deployable Space Antennas Based on Usage of Polygonal Pantograph
,”
J. Aerosp. Eng.
,
18
(
3
), pp.
139
145
.
8.
Chu
,
Z. R.
,
Deng
,
Z. Q.
,
Qi
,
X. Y.
, and
Li
,
B.
,
2014
, “
Modeling and Analysis of a Large Deployable Antenna Structure
,”
Acta Astronaut.
,
95
(
1
), pp.
51
60
.
9.
Wang
,
Y.
,
Liu
,
R. Q.
,
Yang
,
H.
,
Qiang Cong
,
Q.
, and
Guo
,
H. W.
,
2015
, “
Design and Deployment Analysis of Modular Deployable Structure for Large Antennas
,”
J. Spacecr. Rockets
,
52
(
4
), pp.
1101
1111
.
10.
Lu
,
S. N.
,
Zlatanov
,
D.
,
Ding
,
X. L.
, and
Molfinoa
,
R.
,
2014
, “
A New Family of Deployable Mechanisms Based on the Hoekens Linkage
,”
Mech. Mach. Theory
,
73
, pp.
130
153
.
11.
Takamatsu
,
K. A.
, and
Onoda
,
J.
,
1991
, “
New Deployable Truss Concepts for Large Antenna Structures or Solar Concentrators
,”
J. Spacecr. Rockets
,
28
(
3
), pp.
330
338
.
12.
Vu
,
K. K.
,
Richard-Liew
,
J. Y.
, and
Anandasivam
,
K.
,
2006
, “
Deployable Tension-Strut Structures: From Concept to Implementation
,”
J. Constr. Steel Res.
,
62
(
3
), pp.
195
209
.
13.
Yang
,
Y.
, and
Zhang
,
W. X.
,
2014
, “
Kinematic Investigation and Assembly Application of a Spatial Symmetric 6R Mechanism
,”
Acta Aeronaut. Astronaut. Sin.
,
35
(
12
), pp.
3459
3469
(in Chinese).
14.
Yan
,
C.
, and
Zhong
,
Y.
,
2008
, “
On Mobile Assemblies of Bennett Linkage
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
464
(
2093
), pp.
1275
1293
.
15.
Yan
,
C.
,
Zhong
,
Y.
, and
Tibor
,
T.
,
2005
, “
Three Fold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.
16.
Qi
,
X. Z.
,
Deng
,
Z. Q.
,
Li
,
B.
,
Liu
,
R. Q.
, and
Guo
,
H. W.
,
2013
, “
Design and Optimization of Large Deployable Mechanism Constructed by Myard Linkages
,”
CEAS Space J.
,
5
(
3–4
), pp.
147
155
.
17.
Cui
,
J.
,
Huang
,
H. L.
,
Li
,
B.
, and
Deng
,
Z. Q.
,
2012
, “
A Novel Surface Deployable Antenna Structure Based on Special Form of Bricard Linkages
,” Second
ASME/IFToMM
International Conference on Reconfigurable Mechanisms and Robots
, Tianjin, China, July 9–11, pp.
783
792
.
18.
Xu
,
Y.
, and
Guan
,
F. L.
,
2013
, “
Structure–Electronic Synthesis Design of Deployable Truss Antenna
,”
Aerosp. Sci. Technol.
,
26
(
1
), pp.
259
267
.
19.
Deng
,
Z. Q.
,
Huang
,
H. L.
,
Li
,
B.
, and
Liu
,
R. Q.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Rob.
,
3
(
3
), p. 031006.
20.
Huang
,
H. L.
,
Li
,
B.
,
Liu
,
R. Q.
, and
Deng
,
Z. Q.
,
2010
, “
Type Synthesis of Deployable/Foldable Articulated Mechanisms
,” IEEE International Conference on Mechatronics and Automation (
ICMA
2010), Xi'an, China, Aug. 4–7, pp. 991–996.
21.
Warnaar
,
D. B.
, and
Chew
,
M.
,
1995
, “
Kinematic Synthesis of Deployable-Foldable Truss Structures Using Graph Theory—Part 1: Graph Generation
,”
ASME J. Mech. Des
,
117
(
1
), pp.
112
116
.
22.
Wang
,
Y.
,
Deng
,
Z. Q.
,
Liu
,
R. Q.
,
Yang
,
H.
, and
Guo
,
H. W.
,
2014
, “
Topology Structure Synthesis and Analysis of Spatial Pyramid Deployable Truss Structures for Satellite SAR Antenna
,”
J. Mech. Eng.
,
27
(
4
), pp.
683
692
.
23.
Ball
,
R. S.
,
1990
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
24.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
,
Oxford, UK
.
25.
Huang
,
Z.
, and
Li
,
Q. C.
,
2003
, “
Type Synthesis of Symmetrical Lower Mobility Parallel Mechanisms Using the Constraint Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.
26.
Kong
,
X. W.
, and
Gosselin
,
C. M.
,
2006
, “
Type Synthesis of 4-Dof SP-Equivalent Parallel Manipulators: A Virtual Chain Approach
,”
Mech. Mach. Theory
,
41
(
11
), pp.
1306
1319
.
27.
Liu
,
W. L.
,
Xu
,
Y. D.
,
Zhao
,
Y. S.
,
Yao
,
J. T.
,
Han
,
B.
, and
Chen
,
L. L.
,
2017
, “
DOF and Kinematic Analysis of a Deployable Truss Antenna Assembled by Tetrahedral Elements
,”
Lect. Notes Electr. Eng.
,
408
, pp.
855
868
.
You do not currently have access to this content.