This paper presents the novel design of a bioinspired robot capable of generating spatial loading relative to its base. By looking to nature at how animals utilize their tails, a bioinspired structure is developed that utilizes a redundant serial chain of rigid links to mimic the continuous deformation of a biological tail. Individual links are connected by universal joints to enable a spatial robot workspace capable of generating spatial loading comprised of pitch, yaw, and roll direction contributions. Two sets of three cables are used to create two actuated segments along the robot. A dynamic model of the robot is derived using prescribed cable displacement trajectories as inputs to determine the resulting joint angle trajectories and cable tensions. Sensors are integrated on-board the robot to calculate joint angles and joint velocities in real-time for use in feedback control. The loading capabilities of the robot are analyzed, and an experimental prototype is integrated and demonstrated.

References

References
1.
O'Connor
,
S. M.
,
Dawson
,
T. J.
,
Kram
,
R.
, and
Donelan
,
J. M.
,
2014
, “
The Kangaroo's Tail Propels and Powers Pentapedal Locomotion
,”
Biol. Lett.
,
10(7)
, p.
20140381
.
2.
Sfakiotakis
,
M.
,
Lane
,
D. M.
, and
Davies
,
J. B. C.
,
1999
, “
Review of Fish Swimming Modes for Aquatic Locomotion
,”
IEEE J. Oceanic Eng.
,
24
(
2
), pp.
237
252
.
3.
Fish
,
F. E.
,
Bostic
,
S. A.
,
Nicastro
,
A. J.
, and
Beneski
,
J. T.
,
2007
, “
Death Roll of the Alligator: Mechanics of Twist Feeding in Water
,”
J. Exp. Biol.
,
210
(
Pt. 16
), pp.
2811
2818
.
4.
Wilson
,
A. M.
,
Lowe
,
J. C.
,
Roskilly
,
K.
,
Hudson
,
P. E.
,
Golabek
,
K. A.
, and
McNutt
,
J. W.
,
2013
, “
Locomotion Dynamics of Hunting in Wild Cheetahs
,”
Nature
,
498
(
7453
), pp.
185
189
.
5.
Walker
,
C.
,
Vierck
,
C. J.
, Jr.
, and
Ritz
,
L. A.
,
1998
, “
Balance in the Cat: Role of the Tail and Effects of Sacrocaudal Transection
,”
Behav. Brain Res.
,
91
(
1–2
), pp.
41
47
.
6.
Young
,
J. W.
,
Russo
,
G. A.
,
Fellmann
,
C. D.
,
Thatikunta
,
M. A.
, and
Chadwell
,
B. A.
,
2015
, “
Tail Function During Arboreal Quadrupedalism in Squirrel Monkeys (Saimiri Boliviensis) and Tamarins (Saguinus Oedipus)
,”
J. Exp. Zool., Part A
,
323
(
8
), pp.
556
566
.
7.
Mallison
,
H.
,
2010
, “
CAD Assessment of the Posture and Range of Motion of Kentrosaurus Aethiopicus Hennig 1915
,”
Swiss J. Geosci.
,
103
(
2
), pp.
211
233
.
8.
Rone
,
W. S.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2017
, “
Design, Modeling and Optimization of the Universal-Spatial Robotic Tail
,”
ASME
Paper No. IMECE2017-71463.
9.
Saab
,
W.
,
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2018
, “
Discrete Modular Serpentine Robotic Tail: Design, Analysis and Experimentation
,”
Robotica
, in press.
10.
Saab
,
W.
,
Rone
,
W. S.
,
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2018
, “
Design and Integration of a Novel Spatial Articulated Robotic Tail
,”
IEEE/ASME Trans. Mechatronics
, in press.
11.
Saab
,
W.
,
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2017
, “
Robotic Modular Leg: Design, Analysis and Experimentation
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
024501
.
12.
Jin
,
J.
,
Ko
,
S.
, and
Ryoo
,
C. K.
,
2008
, “
Fault Tolerant Control for Satellites With Four Reaction Wheels
,”
Control Eng. Pract.
,
16
(
10
), pp.
1250
1258
.
13.
Machairas
,
K.
, and
Papadopoulos
,
E.
,
2015
, “
On Quadruped Attitude Dynamics and Control Using Reaction Wheels and Tails
,”
European Control Conference
(
ECC
), Linz, Austria, July 15–17, pp.
753
758
.
14.
Kim
,
B.
,
Kim
,
D.-H.
,
Jung
,
J.
, and
Park
,
J.-O.
,
2005
, “
A Biomimetic Undulatory Tadpole Robot Using Ionic Polymer–Metal Composite Actuators
,”
Smart Mater. Struct.
,
14
(
6
), pp.
1579
1585
.
15.
Kopman
,
V.
,
Laut
,
J.
,
Acquaviva
,
F.
,
Rizzo
,
A.
, and
Porfiri
,
M.
,
2014
, “
Dynamic Modeling of a Robotic Fish Propelled by a Compliant Tail
,”
IEEE J. Oceanic Eng.
,
40
(
1
), pp.
209
221
.
16.
Briggs
,
R.
,
Lee
,
J.
,
Haberland
,
M.
, and
Kim
,
S.
,
2012
, “
Tails in Biomimetic Design: Analysis, Simulation, and Experiment
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Vilamoura, Portugal, Oct. 7–12, pp.
1473
1480
.
17.
Patel
,
A.
, and
Braae
,
M.
,
2014
, “
Rapid Acceleration and Braking: Inspiration From the Cheetah's Tail
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
793
799
.
18.
Libby
,
T.
,
Moore
,
T. Y.
,
Chang-Siu
,
E.
,
Li
,
D.
,
Cohen
,
D. J.
,
Jusufi
,
A.
, and
Full
,
R. J.
,
2012
, “
Tail-Assisted Pitch Control in Lizards, Robots and Dinosaurs
,”
Nature
,
481
(
7380
), pp.
181
184
.
19.
Berenguer
,
F. J.
, and
Monasterio-Huelin
,
F. M.
,
2008
, “
Zappa: A Quasi-Passive Biped Walking Robot With a Tail: Modeling, Behavior, and Kinematic Estimation Using Accelerometers
,”
IEEE Trans. Ind. Electron.
,
55
(
9
), pp.
3281
3289
.
20.
Casarez
,
C.
,
Penskiy
,
I.
, and
Bergbreiter
,
S.
,
2013
, “
Using an Inertial Tail for Rapid Turns on a Miniature Legged Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
5469
5474
.
21.
Kohut
,
N. J.
,
Haldane
,
D. W.
,
Zarrouk
,
D.
, and
Fearing
,
R. S.
,
2012
, “
Effect of Inertial Tail on Yaw Rate of 45 Gram Legged Robot
,”
International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
, Baltimore, MD, July 23–26, pp.
157
164
.
22.
He
,
G.
, and
Geng
,
Z.
,
2009
, “
Exponentially Stabilizing an One-Legged Hopping Robot With Non-SLIP Model in Flight Phase
,”
Mechatronics
,
19
(
3
), pp.
364
374
.
23.
Patel
,
A.
, and
Braae
,
M.
,
2013
, “
Rapid Turning at High-Speed: Inspirations From the Cheetah's Tail
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
ICRA
), Tokyo, Japan, Nov. 3–7, pp.
5506
5511
.
24.
Chang-Siu
,
E.
,
Libby
,
T.
,
Brown
,
M.
,
Full
,
R. J.
, and
Tomizuka
,
M.
,
2013
, “
A Nonlinear Feedback Controller for Aerial Self-Righting by a Tailed Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
32
39
.
25.
Ikeda
,
F.
, and
Toyama
,
S.
,
2015
, “
A Proposal of Right and Left Turning Mechanism for Quasi-Passive Walking Robot
,”
IEEE International Conference on Advanced Robotics and Intelligent Systems
(
ARIS
), Taipei, Taiwan, May 29–31, pp. 1–5.
26.
Mutka
,
A.
,
Orsag
,
M.
, and
Kovacic
,
Z.
,
2013
, “
Stabilizing a Quadruped Robot Locomotion Using a Two Degree of Freedom Tail
,”
21st Mediterranean Conference on Control and Automation
(
MED
), Chania, Greece, June 25–28, pp.
1336
1342
.
27.
Provancher
,
W. R.
,
Jensen-Segal
,
S. I.
, and
Fehlberg
,
M. A.
,
2011
, “
ROCR: An Energy-Efficient Dynamic Wall-Climbing Robot
,”
IEEE/ASME Trans. Mechatronics
,
16
(
5
), pp.
897
906
.
28.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2016
, “
Dynamic Modeling and Simulation of a Yaw-Angle Quadruped Maneuvering With a Robotic Tail
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
8
), p.
084502
.
29.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2014
, “
Continuum Robotic Tail Loading Analysis for Mobile Robot Stabilization and Maneuvering
,”
ASME
Paper No. DETC2014-34678.
30.
Robinson
,
G.
, and
Davies
,
J. B. C.
,
1999
, “
Continuum Robots: A State of the Art
,”
IEEE
International Conference on Robotics and Automation
, Detroit, MI, May 10–15, pp.
2849
2854
.
31.
McMahan
,
W.
,
Chitrakaran
,
V.
,
Csencsits
,
M. A.
,
Dawson
,
D. M.
,
Walker
,
I. D.
,
Jones
,
B. A.
,
Pritts
,
M.
,
Dienno
,
D.
,
Grissom
,
M.
, and
Rahn
,
C. D.
,
2006
, “
Field Trials and Testing of the OctArm Continuum Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Orlando, FL, May 15–19, pp.
2336
2341
.
32.
Mazzolai
,
B.
,
Margheri
,
L.
,
Cianchetti
,
M.
,
Dario
,
P.
, and
Laschi
,
C.
,
2012
, “
Soft-Robotic Arm Inspired by the Octopus: II. From Artificial Requirements to Innovative Technological Solutions
,”
Bioinspiration Biomimetics
,
7
(
2
), p.
25005
.
33.
Festo
,
2010
, “
Bionic Handling Assistant
,” Festo, Esslingen, Germany, accessed Mar. 16, 2018, http://www.festo.com/net/SupportPortal/Files/42050/Brosch_FC_BHA_3_0_EN_lo.pdf
34.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2014
, “
Continuum Robot Dynamics Utilizing the Principle of Virtual Power
,”
IEEE Trans. Rob.
,
30
(
1
), pp.
275
287
.
35.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2014
, “
Mechanics Modeling of Multisegment Rod-Driven Continuum Robots
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041006
.
36.
Wei
,
W.
,
Xu
,
K.
, and
Simaan
,
N.
,
2006
, “
A Compact Two-Armed Slave Manipulator for Minimally Invasive Surgery of the Throat
,”
IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Pisa, Italy, Feb. 20–22, pp.
769
774
.
37.
Yim
,
M.
,
1994
,
Locomotion With a Unit-Modular Reconfigurable Robot
,
Stanford University
,
Stanford, CA
.
38.
Arai
,
M.
,
Tanaka
,
Y.
,
Hirose
,
S.
,
Kuwahara
,
H.
, and
Tsukui
,
S.
,
2008
, “
Development of ‘Souryu-IV’ and ‘Souryu-V:’ Serially Connected Crawler Vehicles for In-Rubble Searching Operation
,”
J. Field Rob.
,
25
(
1–2
), pp.
31
65
.
39.
Shammas
,
E.
,
Wolf
,
A.
,
Brown
,
H.
,
Ben
,
J.
, and
Choset
,
H.
,
2003
, “
New Joint Design for Three-Dimensional Hyper Redundant Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Las Vegas, NV, Oct. 27–31, pp.
3594
3599
.
40.
Wolf
,
A.
,
Brown
,
H. B.
,
Casciola
,
R.
,
Costa
,
A.
,
Schwerin
,
M.
,
Shamas
,
E.
, and
Choset
,
H.
,
2003
, “
A Mobile Hyper Redundant Mechanism for Search and Rescue Tasks
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Las Vegas, NV, Oct. 27–31, pp.
2889
2895
.
41.
Li
,
Z.
, and
Du
,
R.
,
2013
, “
Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot
,”
Int. J. Adv. Rob. Syst.
,
10
(
4
), p. 209.
42.
Suh
,
J. W.
,
Kim
,
K. Y.
,
Jeong
,
J. W.
, and
Lee
,
J. J.
,
2015
, “
Design Considerations for a Hyper-Redundant Pulleyless Rolling Joint With Elastic Fixtures
,”
IEEE/ASME Trans. Mechatronics
,
20
(
6
), pp.
2841
2852
.
43.
Hirose
,
S.
, and
Umetani
,
Y.
,
1978
, “
The Development of Soft Gripper for the Versatile Robot Hand
,”
Mech. Mach. Theory
,
13
(
3
), pp.
351
359
.
44.
Catalano
,
M. G.
,
Grioli
,
G.
,
Farnioli
,
E.
,
Serio
,
A.
,
Piazza
,
C.
, and
Bicchi
,
A.
,
2014
, “
Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
768
782
.
45.
Palli
,
G.
,
2006
,
Model and Control of Tendon Actuated Robots
,
Universita Di Bologna
,
Bologna, Italy
.
46.
Cieslak
,
R.
, and
Morecki
,
A.
,
1999
, “
Elephant Trunk Type Elastic Manipulator: A Tool for Bulk and Liquid Materials Transportation
,”
Robotica
,
17
(
1
), pp.
11
16
.
47.
Wahl
,
A. M.
,
1944
,
Mechanical Springs
,
Penton Publishing Company
,
Cleveland, OH
.
48.
Shames
,
I. H.
,
1998
,
Engineering Mechanics: Statics
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.