In this paper, the nonperiodic function synthesis of an RCCC mechanism is presented using a wavelet feature parameter (WFP) method. The output function and the sliding displacement of the RCCC mechanism are described by the wavelet approximate and wavelet details. Based on the relationship of wavelet details of the sliding displacement and its scaling, a normalization method for wavelet details of the sliding displacement is presented. The influence of proportional scaling of the linkage lengths is eliminated. An adaptive database is established. The problem of nonperiodic design requirements of RCCC mechanism function synthesis is solved. To demonstrate the feasibility of this method, two numerical examples are proposed. Based on the nonperiodic design requirements, the RCCC mechanisms are designed and simulated using matlab and catia software. The results show that the method proposed is effective for nonperiodic function generation of the RCCC mechanism with multiple positions.

References

1.
Kim
,
B. S.
, and
Yoo
,
H. H.
,
2012
, “
Unified Synthesis of a Planar Four-Bar Mechanism for Function Generation Using a Spring-Connected Arbitrarily Sized Block Model
,”
Mech. Mach. Theory
,
49
, pp.
141
156
.
2.
Simionescu
,
P. A.
,
2016
, “
A Restatement of the Optimum Synthesis of Function Generators With Planar Four-Bar and Slider-Crank Mechanisms Examples
,”
Int. J. Mech. Rob. Syst.
,
3
(
1
), pp.
60
79
.
3.
Ali
,
H.
,
Murray
,
A. P.
, and
Myszka
,
D. H.
,
2017
, “
The Synthesis of Function Generating Mechanisms for Periodic Curves Using Large Numbers of Double-Crank Linkages
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031002
.
4.
Zimmerman
,
J. R.
,
1967
, “
Four-Precision Point Synthesis of the Spherical Four-Bar Function Generator
,”
J. Mech.
,
2
(
2
), pp.
133
139
.
5.
Alizade
,
R. I.
, and
Kilit
,
Ö.
,
2005
, “
Analytical Synthesis of Function Generating Spherical Four-Bar Mechanism for the Five Precision Points
,”
Mech. Mach. Theory
,
40
(
7
), pp.
863
878
.
6.
Yang
,
S. X.
,
Hong
,
Y.
, and
Tian
,
G. Y.
,
2009
, “
Optimal Selection of Precision Points for Function Synthesis of Spherical 4R Linkage
,”
IMechE Part C: J. Mech. Eng. Sci.
,
223
(
9
), pp.
2183
2189
.
7.
Rao
,
A. V. M.
,
Sandor
,
G. N.
,
Kohli
,
D.
, and
Soni
,
A. H.
,
1973
, “
Closed Form Synthesis of Spatial Function Generating Mechanism for the Maximum Number of Precision Points
,”
ASME J. Eng. Ind.
,
95
(
3
), pp.
725
736
.
8.
Dhall
,
S.
, and
Kramer
,
S. N.
,
1990
, “
Design and Analysis of the HCCC, RCCC, and PCCC Spatial Mechanisms for Function Generation
,”
ASME J. Mech. Des.
,
112
(
1
), pp.
74
78
.
9.
Liu
,
Z.
, and
Angeles
,
J.
,
1994
, “
Optimization of Planar, Spherical and Spatial Function Generators Using Input-Output Curve Planning
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
915
919
.
10.
Yu
,
H. Y.
,
Tang
,
D. W.
, and
Wang
,
Z. X.
,
2007
, “
Study on a New Computer Path Synthesis Method of a Four-Bar Linkage
,”
Mech. Mach. Theory
,
42
(
4
), pp.
383
392
.
11.
McGarva
,
J. R.
, and
Mullineux
,
G.
,
1992
, “
A New Methodology for Rapid Synthesis of Function Generators
,”
IMechE Part C: J. Mech. Eng. Sci.
,
206
(
6
), pp.
391
398
.
12.
Hoeltzel
,
D. A.
, and
Chieng
,
W. H.
,
1990
, “
Pattern Matching Synthesis as an Automated Approach to Mechanism Design
,”
ASME J. Mech. Des.
,
112
(
2
), pp.
190
199
.
13.
Unruh
,
V.
, and
Krishnaswami
,
P.
,
1995
, “
A Computer-Aided Design Technique for Semi-Automated Infinite Point Coupler Curve Synthesis of Four-Bar Linkages
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
143
149
.
14.
Lan
,
Z. H.
, and
Zou
,
H. J.
,
1999
, “
Concurrent Optimum Synthesis of Path Generating Mechanisms Based on the Local Characteristics
,”
Chin. J. Mech. Eng.
,
35
(
5
), pp.
16
19
.
15.
McGarya
,
J. R.
, and
Mullineux
,
G.
,
1993
, “
Harmonic Representation of Closed Curves
,”
Appl. Math. Modell.
,
17
(
4
), pp.
213
218
.
16.
Mullineux
,
G.
,
2011
, “
Atlas of Spherical Four-Bar Mechanisms
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1811
1823
.
17.
Yue
,
C.
,
Su
,
H. J.
, and
Ge
,
Q. J.
,
2012
, “
A Hybrid Computer-Aided Linkage Design System for Tracing Open and Closed Planar Curves
,”
Comput. Aided Des.
,
44
(
11
), pp.
1141
1150
.
18.
Wu
,
J.
,
Ge
,
Q. J.
,
Gao
,
F.
, and
Guo
,
W. Z.
,
2011
, “
On the Extension of a Fourier Descriptor Based Method for Planar Four-Bar Linkage Synthesis for Generation of Open and Closed Paths
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031002
.
19.
Sun
,
J. W.
, and
Chu
,
J. K.
,
2009
, “
Fourier Method to Function Synthesis of an RCCC Mechanism
,”
IMechE Part C: J. Mech. Eng. Sci.
,
223
(
2
), pp.
503
513
.
20.
Chu
,
J. K.
, and
Sun
,
J. W.
,
2010
, “
A New Approach to Dimension Synthesis of Spatial Four-Bar Linkage Through Numerical Atlas Method
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041004
.
21.
Galán-Marín
,
G.
,
Alonso
,
F. J.
, and
Castillo
,
J. M. D.
,
2009
, “
Shape Optimization for Path Synthesis of Crank-Rocker Mechanisms Using a Wavelet-Based Neural Network
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1132
1143
.
22.
Stanković
,
R. S.
, and
Falkowski
,
B. J.
,
2003
, “
The Haar Wavelet Transform: Its Status and Achievements
,”
Comput. Electr. Eng.
,
29
(
1
), pp.
25
44
.
You do not currently have access to this content.