This paper presents a general discretization-based approach to the large deflection problems of spatial flexible links in compliant mechanisms. Based on the principal axes decomposition of structural compliance matrices, a particular type of elements, which relate to spatial six degrees-of-freedom (DOF) serial mechanisms with passive elastic joints, is developed to characterize the force-deflection behavior of the discretized small segments. Hence, the large deflection problems of spatial flexible rods can be transformed to the determination of static equilibrium configurations of their equivalent hyper-redundant mechanisms. The main advantage of the proposed method comes from the use of robot kinematics/statics, rather than structural mechanics. Thus, a closed-form solution to the system overall stiffness can be derived straightforwardly for efficient gradient-based searching algorithms. Two kinds of typical equilibrium problems are intensively discussed and the correctness has been verified by means of physical experiments. In addition, a 2DOF planar compliant parallel manipulator is provided as a case study to demonstrate the potential applications.

References

1.
Howell
,
L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Saxena
,
R.
, and
Saxena
,
A.
,
2009
, “
Design of Electrothermally Compliant MEMS With Hexagonal Cells Using Local Temperature and Stress Constraints
,”
ASME J. Mech. Des.
,
131
(
5
), p.
051006
.
3.
Asbeck
,
A.
, and
Cutkosky
,
M.
,
2012
, “
Designing Compliant Spine Mechanisms for Climbing
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031007
.
4.
Edelmann
,
J.
,
Petruska
,
A.
, and
Nelson
,
B.
,
2017
, “
Magnetic Control of Continuum Devices
,”
Int. J. Rob. Res.
,
36
(
1
), pp.
68
85
.
5.
Marras
,
A.
,
Zhou
,
L.
,
Su
,
H.
, and
Castro
,
C.
,
2015
, “
Programmable Motion of DNA Origami Mechanisms
,”
Proc. Natl. Acad. Sci.
,
112
(
3
), pp.
713
718
.
6.
Midha
,
A.
,
Norton
,
T.
, and
Howell
,
L.
,
1994
, “
On the Nomenclature, Classification, and Abstractions of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
270
279
.
7.
Awtar
,
S.
,
Slocum
,
A.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
8.
Frisch-Fay
,
R.
,
1962
,
Flexible Bars
,
Butterworths
,
Washington, DC
.
9.
Kimball
,
C.
, and
Tsai
,
L.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
223
235
.
10.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
11.
Howell
,
L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
12.
Su
,
H.
,
2009
, “
A Pseudo-Rigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
13.
Chen
,
G.
,
Xiong
,
B.
, and
Huang
,
X.
,
2011
, “
Finding the Optimal Characteristic Parameters for 3R Pseudo-Rigid-Body Model Using an Improved Particle Swarm Optimizer
,”
Precis. Eng.
,
35
(
3
), pp.
505
511
.
14.
Zhu
,
S.
, and
Yu
,
Y.
,
2017
, “
Pseudo-Rigid-Body Model for the Flexural Beam With an Inflection Point in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031005
.
15.
Yu
,
Y.-Q.
, and
Zhu
,
S.-K.
,
2017
, “
5R Pseudo-Rigid-Body Model for Inflection Beams in Compliant Mechanisms
,”
Mech. Mach. Theory
,
116
, pp.
501
512
.
16.
Jensen
,
B.
, and
Howell
,
L.
,
2004
, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
701
708
.
17.
Midha
,
A.
,
Bapat
,
S.
,
Mavanthoor
,
A.
, and
Chinta
,
V.
,
2012
, “Analysis of a Fixed-Guided Compliant Beam With an Inflection Point Using the Pseudo-Rigid-Body Model (PRBM) Concept,”
ASME
Paper No. DETC2012-71400.
18.
Vogtmann
,
D.
,
Gupta
,
S.
, and
Bergbreiter
,
S.
,
2013
, “
Characterization and Modeling of Elastomeric Joints in Miniature Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041017
.
19.
Zhou
,
L.
,
Marras
,
A.
,
Castro
,
C.
, and
Su
,
H.
,
2016
, “
Pseudo Rigid-Body Models of Compliant DNA Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051013
.
20.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
.
21.
Her
,
I.
,
1986
, “Methodology for Compliant Mechanisms Design,” Ph.D. thesis, Purdue University, West Lafayette, IN.
22.
Campanile
,
L.
, and
Hasse
,
A.
,
2008
, “
A Simple and Effective Solution of the Elastica Problem
,”
J. Mech. Eng. Sci.
,
222
(
12
), pp.
2513
2516
.
23.
Pauly
,
J.
, and
Midha
,
A.
,
2006
, “
Pseudo-Rigid-Body Model Chain Algorithm—Part 1: Introduction and Concept Development
,”
ASME
Paper No. DETC2006-99460.
24.
Chase
,
R.
,
Todd
,
R.
,
Howell
,
L.
, and
Magleby
,
S.
,
2011
, “
A 3-D Chain Algorithm With Pseudo-Rigid-Body Model Elements
,”
Mech. Based Des. Struct. Mach.
,
39
(
1
), pp.
142
156
.
25.
Ma
,
F.
, and
Chen
,
G.
,
2015
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
26.
Banerjee
,
A.
,
Bhattacharya
,
B.
, and
Mallik
,
A.
,
2008
, “
Large Deflection of Cantilever Beams With Geometric Non-Linearity: Analytical and Numerical Approaches
,”
Int. J. Non-Linear Mech.
,
43
(
5
), pp.
366
376
.
27.
Lan
,
C.-C.
,
2008
, “
Analysis of Large-Displacement Compliant Mechanisms Using an Incremental Linearization Approach
,”
Mech. Mach. Theory
,
43
(
5
), pp.
641
658
.
28.
Odhner
,
L.
, and
Dollar
,
A.
,
2012
, “
The Smooth Curvature Model: An Efficient Representation of Euler-Bernoulli Flexures as Robot Joints
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
761
772
.
29.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
30.
Festo Group, 2011, “
Bionic Tripod 3.0
,” Festo AG & Co. KG, Esslingen, Germany, accessed Feb. 19, 2018, https://www.festo.com/bionic
31.
Chen
,
G.
,
Wang
,
H.
,
Lin
,
Z.
, and
Lai
,
X.
,
2015
, “
The Principal Axes Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
191
207
.
32.
Murray
,
R. M.
,
Sastry
,
S. S.
, and
Li
,
Z. X.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
33.
Selig
,
J. M.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
.
34.
Lardner, T., and Archer, R., 1994,
Mechanics of Solids: An Introduction
,
McGraw-Hill
, New York.
35.
Chen
,
I.
,
Yang
,
G.
,
Tan
,
C.
, and
Yeo
,
S.
,
2001
, “
Local POE Model for Robot Kinematic Calibration
,”
Mech. Mach. Theory
,
36
(
11–12
), pp.
1215
1239
.
36.
Chen
,
G.
,
Wang
,
H.
, and
Lin
,
Z.
,
2014
, “
Determination of the Identifiable Parameters in Robot Calibration Based on the POE Formula
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1066
1077
.
37.
Cutkosky
,
M.
, and
Kao
,
I.
,
1989
, “
Computing and Controlling Compliance of a Robotic Hand
,”
IEEE Trans. Rob. Autom.
,
5
(
2
), pp.
151
165
.
38.
Dai
,
J.
,
2014
,
Screw Algebra and Lie Groups and Lie Algebra
,
Higher Education Press
,
Beijing, China
.
You do not currently have access to this content.