This paper presents unified control schemes for compliant humanoid robots that are aimed at ensuring successful execution of both balancing tasks and walking trajectories for this class of bipeds, given the complexity of under-actuation. A set of controllers corresponding to the single-support (SS) and double-support (DS) walking phases has been designed based on the flexible sagittal joint dynamics of the system, accounting for both the motor and link states. The first controller uses partial state feedback (proportional–derivative–derivative (PDD)), whereas the second considers the full state of the robot (proportional–proportional–derivative–derivative (PPDD)), while both are mathematically proven to stabilize the closed-loop systems for regulation and trajectory tracking tasks. It is demonstrated mathematically that the PDD controller possesses better stability properties than the PPDD scheme for regulation tasks, even though the latter has the advantage of allowing for its associated gain-set to be generated by means of standard techniques, such as linear quadratic regulator (LQR) control. A switching condition relating the center-of-pressure (CoP) to the energy functions corresponding to the DS and SS models has also been established. The theoretical results are corroborated by means of balancing and walking experiments using the COmpliant huMANoid (COMAN), while a practical comparison between the designed controller and a classical PD controller for compliant robots has also been performed. Overall, and a key conclusion of this paper, the PPDD scheme has produced a significantly improved trajectory tracking performance, with 9%, 15%, and 20% lower joint space error for the hip, knee, and ankle, respectively.

References

1.
Vukobratovic
,
M.
, and
Borovac
,
B.
,
2004
, “
Zero-Moment Point—Thirty Five Years of Its Life
,”
Int. J. Human. Rob.
,
1
(
1
), pp.
157
173
.
2.
Sardain
,
P.
, and
Bessonnet
,
G.
,
2004
, “
Forces Acting on a Biped Robot. Center of Pressure—Zero Moment Point
,”
IEEE Trans. Syst., Man., Cyber
,
34
(
5
), pp.
630
637
.
3.
Hirai
,
K.
,
Hirose
,
M.
,
Haikawa
,
Y.
, and
Takenaka
,
T.
,
1998
, “
The Development of Honda Humanoid Robot
,”
IEEE
International Conference on Robotics and Automation
, Leuven, Belgium, May 16–20, pp.
1321
1326
.
4.
Pratt
,
J.
, and
Pratt
,
G.
,
1998
, “
Intuitive Control of a Planar Bipedal Walking Robot
,”
IEEE
International Conference on Robotics and Automation, Leuven, Belgium, May 16–20, pp.
2014
2021
.
5.
Huang
,
Q.
, and
Nakamura
,
Y.
,
2005
, “
Sensory Reflex Control for Humanoid Walking
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
977
984
.
6.
Kajita
,
S.
,
Morisawa
,
M.
,
Miura
,
K.
,
Nakaoka
,
S.
,
Harada
,
K.
,
Kaneko
,
K.
,
Kanehiro
,
F.
, and
Yokoi
,
K.
,
2006
, “
Biped Walking Stabilization Based on Linear Inverted Pendulum Tracking
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
4489
4496
.
7.
Sugimoto
,
N.
, and
Morimoto
,
J.
,
2011
, “
Switching Multiple LQG Controllers Based on Bellman's Optimality Principle: Using Full-State Feedback to Control a Humanoid Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
3185
3191
.
8.
Spyrakos-Papastavridis
,
E.
,
Medrano-Cerda
,
G.
,
Tsagarakis
,
N.
,
Dai
,
J.
, and
Caldwell
,
D.
,
2013
, “
Gravity Compensation Control of Compliant Joint Systems With Multiple Drives
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
4960
4966
.
9.
Spyrakos-Papastavridis
,
E.
,
Medrano-Cerda
,
G.
,
Tsagarakis
,
N.
,
Dai
,
J.
, and
Caldwell
,
D.
,
2013
, “
A Compliant Humanoid Walking Strategy Based on the Switching of State Feedback Gravity Compensation Controllers
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
3630
3636
.
10.
Tsagarakis
,
N.
,
Morfey
,
S.
,
Medrano-Cerda
,
G.
,
Li
,
Z.
, and
Caldwell
,
D.
,
2013
, “
Compliant Humanoid COMAN: Optimal Joint Stiffness Tuning for Modal Frequency Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
673
678
.
11.
Ugurlu
,
B.
,
Tsagarakis
,
N.
,
Spyrakos-Papastavridis
,
E.
, and
Caldwell
,
D.
,
2011
, “
Compliant Joint Modification and Real-Time Dynamic Walking Implementation on Bipedal Robot cCub
,”
IEEE International Conference on Mechatronics
(
ICM
), Istanbul, Turkey, Apr. 13–15, pp.
833
838
.
12.
Colasanto
,
L.
,
Tsagarakis
,
N.
,
Li
,
Z.
, and
Caldwell
,
D.
,
2012
, “
Internal Model Control for Improving the Gait Tracking of a Compliant Humanoid Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Vilamoura, Portugal, Oct. 7–12, pp.
5347
5352
.
13.
Lim
,
B.
,
Lee
,
M.
,
Kim
,
J.
,
Lee
,
J.
,
Park
,
J.
,
Seo
,
K.
, and
Roh
,
K.
,
2012
, “
Control Design to Achieve Dynamic Walking on a Bipedal Robot With Compliance
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
79
84
.
14.
Tomei
,
P.
,
1991
, “
A Simple PD Controller for Robots With Elastic Joints
,”
IEEE Trans. Autom. Control
,
36
(
10
), pp.
1208
1213
.
15.
Kelly
,
R.
, and
Santibánez
,
V.
,
1998
, “
Global Regulation of Elastic Joint Robots Based on Energy Shaping
,”
IEEE Trans. Autom. Control
,
43
(
10
), pp.
1451
1456
.
16.
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2001
, “
State Feedback Controller for Flexible Joint Robots: A Globally Stable Approach Implemented on DLR's Light-Weight Robots
,”
Adv. Rob.
,
15
(
8
), pp.
799
814
.
17.
De Luca
,
A.
,
Siciliano
,
B.
, and
Zollo
,
L.
,
2005
, “
PD Control With On-Line Gravity Compensation for Robots With Elastic Joints: Theory and Experiments
,”
Automatica
,
41
(
10
), pp.
1809
1819
.
18.
Lanari
,
L.
,
Sicard
,
P.
, and
Wen
,
J.
,
1993
, “
Trajectory Tracking of Flexible Joint Robots: A Passivity Approach
,”
European Control Conference
(
ECC
), Gröningen, The Netherlands, June 28–July 1, pp.
886
891
.
19.
Loria
,
A.
, and
Ortega
,
R.
,
1995
, “
On Tracking Control of Rigid and Flexible Joint Robots
,”
App. Math. Comp. Sci.
,
5
(
2
), pp.
101
113
.
20.
Tian
,
L.
, and
Goldenberg
,
A.
,
1995
, “
Robust Adaptive Control of Flexible Joint Robots With Joint Torque Feedback
,”
IEEE
International Conference on Robotics and Automation
, Nagoya, Japan, May 21–27, pp.
1229
1234
.
21.
Choi
,
Y.
,
Kim
,
D.
, and
You
,
B.
,
2006
, “
On the Walking Control for Humanoid Robot Based on the Kinematic Resolution of CoM Jacobian With Embedded Motion
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Orlando, FL, May 15–19, pp.
2655
2660
.
22.
Westervelt
,
E.
,
Grizzle
,
J.
, and
Koditschek
,
D.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.
23.
Grizzle
,
J.
,
Abba
,
G.
, and
Plestan
,
F.
,
2001
, “
Asymptotically Stable Walking for Biped Robots: Analysis Via Systems With Impulse Effects
,”
IEEE Trans. Autom. Control
,
46
(
1
), pp.
51
64
.
24.
Hyon
,
S.
, and
Cheng
,
G.
,
2006
, “
Passivity-Based Full-Body Force Control for Humanoids and Application to Dynamic Balancing and Locomotion
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Beijing, China, Oct. 9–15, pp.
4915
4922
.
25.
Seo
,
K.
,
Kim
,
J.
, and
Roh
,
K.
,
2012
, “
Towards Natural Bipedal Walking: Virtual Gravity Compensation and Capture Point Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Vilamoura, Portugal, Oct. 7–12, pp.
4019
4026
.
26.
Hyon
,
S.
,
Hale
,
J.
, and
Cheng
,
G.
,
2007
, “
Full-Body Compliant Human-Humanoid Interaction: Balancing in the Presence of Unknown External Forces
,”
IEEE Trans. Rob.
,
23
(
5
), pp.
884
898
.
27.
Schneiders
,
M.
,
van der Molengraft
,
M.
, and
Steinbuch
,
M.
,
2004
, “
Benefits of Over-Actuation in Motion Systems
,”
American Control Conference
(
ACC
), Boston, MA, June 30–July 2, pp.
505
510
.
28.
Spong
,
M.
,
1987
, “
Modeling and Control of Elastic Joint Robots
,”
ASME J. Dyn. Sys., Meas., Control
,
109
(
4
), pp.
310
319
.
29.
Thelen
,
D.
,
Anderson
,
F.
, and
Delp
,
S.
,
2003
, “
Generating Dynamics Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.
30.
Spong
,
M.
,
1989
, “
Adaptive Control of Flexible Joint Manipulators
,”
Syst. Cont. Lett.
,
13
(
1
), pp.
15
21
.
31.
Bacciotti, A., and Rosier, A., 2005,
Liapunov Functions and Stability in Control Theory
, 2nd ed., Springer-Verlag, Berlin.
32.
Medrano-Cerda
,
G.
,
Dallali
,
H.
, and
Brown
,
M.
,
2012
, “
Control of a Compliant Humanoid Robot in Double Support Phase: A Geometric Approach
,”
Int. J. Human. Rob.
,
9
(
1
), p.
1250004
.
33.
Dallali
,
H.
,
Medrano-Cerda
,
G.
, and
Brown
,
M.
,
2010
, “
A Comparison of Multivariable & Decentralized Control Strategies for Robust Humanoid Walking
,”
UKACC International Conference on Control
, Coventry, UK, Sept. 7–10, pp. 1–6.
34.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2001
,
Multivariable Feedback Control: Analysis and Design
,
Wiley
, New York.
35.
Ott
,
C.
,
2008
,
Cartesian Impedance Control of Redundant and Flexible-Joint Robots
, 1st ed., Springer-Verlag, Berlin.
36.
Zhao
,
T.
, and
Dai
,
J.
,
2003
, “
Dynamics and Coupling Actuation of Elastic Underactuated Manipulators
,”
J. Rob. Syst.
,
20
(
3
), pp.
135
146
.
37.
Dai
,
J.
, and
Zhao
,
T.
,
2002
, “
Stiffness Characteristics and Kinematics Analysis of Two-Link Elastic Underactuated Manipulators
,”
J. Rob. Syst.
,
19
(
4
), pp.
169
176
.
38.
Khalil
,
H.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
. Upper Saddle River, NJ.
39.
Xie
,
W.
,
Wen
,
C.
, and
Li
,
Z.
,
2001
, “
Input-to-State Stabilization of Switched Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
46
(
7
), pp.
1111
1116
.
40.
Spyrakos-Papastavridis
,
E.
,
Kashiri
,
N.
,
Lee
,
J.
,
Tsagarakis
,
N.
, and
Caldwell
,
D.
,
2015
, “
Online Impedance Parameter Tuning for Compliant Biped Balancing
,”
IEEE-RAS 15th International Conference on Humanoid Robots
(
Humanoids
), Seoul, South Korea, Nov. 3–5, pp.
210
216
.
41.
Spyrakos-Papastavridis
,
E.
,
Perrin
,
N.
,
Tsagarakis
,
N.
,
Dai
,
J.
, and
Caldwell
,
D.
,
2014
, “
Lyapunov Stability Margins for Humanoid Robot Balancing
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Chicago, IL, Sept. 14–18, pp.
945
951
.
42.
Spyrakos-Papastavridis
,
E.
,
Childs
,
P.
, and
Tsagarakis
,
N.
,
2017
, “
Variable Impedance Walking Using Time-Varying Lyapunov Stability Margins
,”
IEEE-RAS 17th International Conference on Humanoid Robotics
(
Humanoids
), Birmingham, UK, Nov. 15–17, pp.
318
323
.
43.
Gopal
,
M.
,
1993
,
Modern Control System Theory
, 2nd ed., Wiley Eastern Limited, New Delhi.
44.
Brogliato
,
B.
,
2004
, “
Absolute Stability and the Lagrange-Dirichlet Theorem With Monotone Multivalued Mappings
,”
Syst. Control Lett.
,
51
(
5
), pp.
343
353
.
You do not currently have access to this content.