Compliant universal joints have been widely employed in high-precision fields due to plenty of good performance. However, the stiffness characteristics, as the most important consideration for compliant mechanisms, are rarely involved. In this paper, a deterministic design for a constraint-based compliant parallel universal joint with constant rotational stiffness is presented. First, a constant stiffness realization principle is proposed by combination of the freedom and constraint topology (FACT) method and beam constraint model (BCM) to establish a mapping relationship between stiffness characteristics and topology configurations. A parallel universal joint topology is generated by the constant stiffness realization principle. Then, the analytical stiffness model of the universal joint with some permissible approximations is formulated based on the BCM, and geometrical prerequisites are derived to achieve the desired constant rotational stiffness. After that, finite element analysis (FEA), experimental testing, and detailed stiffness analysis are carried out. It turns out that the rotational stiffness of the universal joint can keep constant with arbitrary azimuth angles even if the rotational angle reaches up to ±5 deg. Meanwhile, the acceptable relative errors of rotational stiffness are within 0.53% compared with the FEA results and 2.6% compared with the experimental results, which indicates the accuracy of the theoretical stiffness model and further implies the feasibility of constant stiffness realization principle on guiding the universal joint design.

References

References
1.
Mills
,
A.
,
2007
, “
Robert Hooke's ‘Universal Joint’ and Its Application to Sundials and the Sundial-Clock
,”
Notes Rec. R. Soc.
,
61
(
2
), pp.
219
236
.
2.
Hans-Christoph
,
S. T.
, and
Friedrich
,
S.
, and,
Erich
,
A.
,
2006
,
Universal Joints and Driveshafts
,
Springer
,
Berlin
.
3.
Paros
,
J.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
, pp.
151
156
.
4.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms
,
CRC Press
,
Boca Raton, FL
.
5.
Howell
,
L. L.
,
2013
,
Compliant Mechanisms, 21st Century Kinematics
,
Springer
,
London
.
6.
Loney
,
G. C.
,
1990
, “
Design of a Small-Aperture Steering Mirror for High Bandwidth Acquisition and Tracking
,”
Opt. Eng.
,
29
(
11
), p.
1360
.
7.
Boynton
,
R.
,
Wiener
,
P. K.
,
Kennedy
,
P.
,
Rathbun
,
B.
, and
Engineer
,
A. C.
,
2003
, “
Static Balancing a Device With Two or More Degrees of Freedom (the Key to Obtaining High Performance on Gimbaled Missile Seekers)
,”
62nd Annual Conference of Society of Allied Weight Engineers
, (SAWE), New Haven, CT, May 19–21, pp.
24
28
.
8.
Hongzhe
,
Z.
, and
Shusheng
,
B.
,
2010
, “
Accuracy Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1434
1448
.
9.
Dong
,
X.
,
Raffles
,
M.
,
Cobos-Guzman
,
S.
,
Axinte
,
D.
, and
Kell
,
J.
,
2015
, “
A Novel Continuum Robot Using Twin-Pivot Compliant Joints: Design, Modeling, and Validation
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021010
.
10.
Walker
,
I. D.
,
2013
, “
Continuous Backbone ‘Continuum’ Robot Manipulators
,”
ISRN Rob.
,
2013
, pp.
1
19
.
11.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
CRC Press
,
Boca Raton, FL
.
12.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2003
, “
Two-Axis Flexure Hinges With Axially-Collocated and Symmetric Notches
,”
Comput. Struct
,
81
(
13
), pp.
1329
1341
.
13.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.
14.
Stark
,
J. A.
,
1958
, “
Flexible Couplings
,” U.S. Patent No.
US2860495
.
15.
Tanık
,
E.
, and
Parlaktaş
,
V.
,
2012
, “
Compliant Cardan Universal Joint
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021011
.
16.
Farhadi Machekposhti
,
D.
,
Tolou
,
N.
, and
Herder
,
J. L.
,
2015
, “
A Review on Compliant Joints and Rigid-Body Constant Velocity Universal Joints Toward the Design of Compliant Homokinetic Couplings
,”
ASME J. Mech. Des.
,
137
(
3
), p.
032301
.
17.
Chen
,
C.-T.
,
1995
,
Linear System Theory and Design
,
Saunders College Publishing
,
Philadelphia, PA
.
18.
Schetzen
,
M.
,
1980
,
The Volterra and Wiener Theories of Nonlinear Systems
,
Krieger Publishing Co.
,
Melbourne, FL
.
19.
Rugh
,
W. J.
,
1981
,
Nonlinear System Theory
,
Johns Hopkins University Press
,
Baltimore, MD
.
20.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
21.
Slocum
,
A. H.
,
1992
,
Precision Machine Design
,
Prentice Hall
,
Upper Saddle River, NJ
.
22.
Awtar
,
S.
,
2004
, “
Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.
23.
Brouwer
,
D. M.
,
de Jong
,
B. R.
, and
Soemers
,
H.
,
2010
, “
Design and Modeling of a Six DOFs MEMS-Based Precision Manipulator
,”
Precis. Eng.
,
34
(
2
), pp.
307
319
.
24.
Xu
,
Q.
, and
Li
,
Y.
,
2010
, “
Novel Design of a Totally Decoupled Flexure-Based XYZ Parallel Micropositioning Stage
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Montreal, QC, Canada, July 6–9, pp.
866
871
.
25.
Seggelen
,
J. K V.
,
Rosielle
,
P.
,
Schellekens
,
P. H. J.
,
Spaan
,
H. A. M.
,
Bergmans
,
R. H.
, and
Kotte
,
G.
,
2005
, “
An Elastically Guided Machine Axis With Nanometer Repeatability
,”
CIRP Ann. Manuf. Technol.
,
54
(
1
), pp.
487
490
.
26.
Yangmin
,
L.
, and
Qingsong
,
X.
,
2009
, “
Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
645
657
.
27.
Parmar
,
G.
,
Barton
,
K.
, and
Awtar
,
S.
,
2014
, “
Large Dynamic Range Nanopositioning Using Iterative Learning Control
,”
Precis. Eng.
,
38
(
1
), pp.
48
56
.
28.
Wittrick
,
W. H.
,
1951
, “
The Properties of Crossed Flexure Pivots, and the Influence of the Point at Which the Strips Cross
,”
Aeronaut. Q.
,
2
(
04
), pp.
272
292
.
29.
Zelenika
,
S.
, and
De Bona
,
F.
,
2002
, “
Analytical and Experimental Characterisation of High-Precision Flexural Pivots Subjected to Lateral Loads
,”
Precis. Eng.
,
26
(
4
), pp.
381
388
.
30.
Zhao
,
H.
,
Bi
,
S.
, and
Yu
,
J.
,
2012
, “
A Novel Compliant Linear-Motion Mechanism Based on Parasitic Motion Compensation
,”
Mech. Mach. Theory
,
50
, pp.
15
28
.
31.
Hongzhe
,
Z.
,
Shusheng
,
B.
,
Jingjun
,
Y.
, and
Jun
,
G.
,
2012
, “
Design of a Family of Ultra-Precision Linear Motion Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041012
.
32.
Sarajlic
,
E.
,
Yamahata
,
C.
,
Cordero
,
M.
, and
Fujita
,
H.
,
2010
, “
Three-Phase Electrostatic Rotary Stepper Micromotor With a Flexural Pivot Bearing
,”
J. Microelectromech. Syst.
,
19
(
2
), pp.
338
349
.
33.
Sarajlic
,
E.
,
Yamahata
,
C.
,
Cordero
,
M.
, and
Fujita
,
H.
,
2009
, “
Electrostatic Rotary Stepper Micromotor for Skew Angle Compensation in Hard Disk Drive
,” IEEE 22nd International Conference on Micro Electro Mechanical Systems (
MEMS
), Sorrento, Italy, Jan. 25–29, pp.
1079
1082
.
34.
Sung
,
E.
,
2011
, “
Design and Analysis of Diagnostic Machines Utilizing Compliant Mechanisms
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.
35.
Sung
,
E.
,
Slocum
,
A. H.
,
Ma
,
R.
,
Bean
,
J. F.
, and
Culpepper
,
M. L.
,
2011
, “
Design of an Ankle Rehabilitation Device Using Compliant Mechanisms
,”
ASME J. Med. Device
,
5
(
1
), p.
011001
.
36.
Shi
,
H.
,
Su
,
H. J.
, and
Dagalakis
,
N.
,
2014
, “
A Stiffness Model for Control and Analysis of a MEMS Hexapod Nanopositioner
,”
Mech. Mach. Theory
,
80
(
4
), pp.
246
264
.
37.
Teo
,
T. J.
,
Chen
,
I. M.
, and
Yang
,
G.
,
2014
, “
A Large Deflection and High Payload Flexure-Based Parallel Manipulator for UV Nanoimprint Lithography—Part II: Stiffness Modeling and Performance Evaluation
,”
Precis. Eng.
,
38
(
4
), pp.
872
884
.
38.
Kang
,
B. H.
,
Wen
,
T. Y.
,
Dagalakis
,
N. G.
, and
Gorman
,
J. J.
,
2005
, “
Analysis and Design of Parallel Mechanisms With Flexure Joints
,”
IEEE Trans. Rob. Autom.
,
21
(
6
), pp.
1179
1185
.
39.
Xie
,
Y.
,
Pan
,
B.
,
Pei
,
X.
, and
Yu
,
J.
,
2016
, “
Design of Compliant Universal Joint With Linear Stiffness
,”
ASME
Paper No. DETC2016-59110.
40.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
41.
Su
,
H.-J.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
.
42.
Yu
,
J. J.
,
Li
,
S. Z.
,
Pei
,
X.
,
Su
,
H.
,
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Type Synthesis Principle and Practice of Flexure Systems in the Framework of Screw Theory—Part I: General Methodology
,”
ASME
Paper No. DETC2010-28783.
43.
Qiu
,
C.
,
Yu
,
J. J.
,
Li
,
S. Z.
,
Su
,
H.
, and
Zeng
,
Y. Z.
,
2011
, “
Synthesis of Actuation Spaces of Multi-Axis Parallel Flexure Mechanisms Based on Screw Theory
,”
ASME
Paper No. DETC2011-48252.
44.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.
45.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
46.
Hao
,
G.
, and
Li
,
H.
,
2015
, “
Nonlinear Analytical Modeling and Characteristic Analysis of a Class of Compound Multibeam Parallelogram Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041016
.
47.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.
48.
Awtar
,
S.
, and
Parmar
,
G.
,
2013
, “
Design of a Large Range XY Nanopositioning System
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021008
.
49.
Hao
,
G.
, and
Kong
,
X.
,
2012
, “
A Novel Large-Range XY Compliant Parallel Manipulator With Enhanced Out-of-Plane Stiffness
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061009
.
50.
Panas
,
R. M.
, and
Hopkins
,
J. B.
,
2015
, “
Eliminating Underconstraint in Double Parallelogram Flexure Mechanisms
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092301
.
You do not currently have access to this content.