Cable-suspended robots may move beyond their static workspace by keeping all cables under tension, thanks to end-effector inertia forces. This may be used to extend the robot capabilities, by choosing suitable dynamical trajectories. In this paper, we consider three-dimensional (3D) elliptical trajectories of a point-mass end effector suspended by three cables from a base of generic geometry. Elliptical trajectories are the most general type of spatial sinusoidal motions. We find a range of admissible frequencies for which said trajectories are feasible; we also show that there is a special frequency, which allows the robot to have arbitrarily large oscillations. The feasibility of these trajectories is verified via algebraic conditions that can be quickly verified, thus being compatible with real-time applications. By generalizing previous studies, we also study the possibility to change the frequency of oscillation: this allows the velocity at which a given ellipse is tracked to be varied, thus providing more latitude in the trajectory definition. We finally study transition trajectories to move the robot from an initial state of rest (within the static workspace) to the elliptical trajectory (and vice versa) or to connect two identical ellipses having different centers.

References

References
1.
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2004
, “
Force-Feasible Workspace Analysis for Underconstrained, Point-Mass Cable Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), New Orleans, LA, Apr. 26–May 1, pp.
4956
4962
.
2.
Barrette
,
G.
, and
Gosselin
,
C.
,
2005
, “
Determination of the Dynamic Workspace of Cable-Driven Planar Parallel Mechanisms
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
242
248
.
3.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2013
, “
Stability Analysis of Underconstrained Cable-Driven Parallel Robots
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
288
296
.
4.
Berti
,
A.
,
Merlet
,
J.-P.
, and
Carricato
,
M.
,
2016
, “
Solving the Direct Geometrico-Static Problem of Underconstrained Cable-Driven Parallel Robots by Interval Analysis
,”
Int. J. Rob. Res.
,
35
(
6
), pp.
723
739
.
5.
Abbasnejad
,
G.
, and
Carricato
,
M.
,
2015
, “
Direct Geometrico-Static Problem of Underconstrained Cable-Driven Parallel Robots With n Cables
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
468
478
.
6.
Cunningham
,
D.
, and
Asada
,
H. H.
,
2009
, “
The Winch-Bot: A Cable-Suspended, Under-Actuated Robot Utilizing Parametric Self-Excitation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
1844
1850
.
7.
Lefrancois
,
S.
, and
Gosselin
,
C.
,
2010
, “
Point-to-Point Motion Control of a Pendulum-like 3-Dof Underactuated Cable-Driven Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
5187
5193
.
8.
Zoso
,
N.
, and
Gosselin
,
C.
,
2012
, “
Point-to-Point Motion Planning of a Parallel 3-Dof Underactuated Cable-Suspended Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
2325
2330
.
9.
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2011
, “
Modeling and Control of a 3-DOF Pendulum-Like Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
3964
3969
.
10.
Idá
,
E.
,
Berti
,
A.
,
Bruckmann
,
T.
, and
Carricato
,
M.
,
2018
, “
Rest-to-Rest Trajectory Planning for Planar Underactuated Cable-Driven Parallel Robots
,”
Cable-Driven Parallel Robots
,
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer International Publishing
,
Québec, QC, Canada
, pp.
207
218
.
11.
Barbazza
,
L.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2017
, “
Design and Optimal Control of an Underactuated Cable-Driven Micro-Macro Robot
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
896
903
.
12.
Bamdad
,
M.
,
Taheri
,
F.
, and
Abtahi
,
N.
,
2015
, “
Dynamic Analysis of a Hybrid Cable-Suspended Planar Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
1621
1626
.
13.
Trevisani
,
A.
,
2010
, “
Underconstrained Planar Cable-Direct-Driven Robots: A Trajectory Planning Method Ensuring Positive and Bounded Cable Tensions
,”
Mechatronics
,
20
(
1
), pp.
113
127
.
14.
Trevisani
,
A.
,
2013
, “
Planning of Dynamically Feasible Trajectories for Translational, Planar, and Underconstrained Cable-Driven Robots
,”
J. Syst. Sci. Complexity
,
26
(
5
), pp.
695
717
.
15.
Trevisani
,
A.
,
2012
, “
Experimental Validation of a Trajectory Planning Approach Avoiding Cable Slackness and Excessive Tension in Underconstrained Translational Planar Cable-Driven Robots
,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer-Verlag
,
Berlin
, pp.
23
39
.
16.
Gosselin
,
C.
,
Ren
,
P.
, and
Foucault
,
S.
,
2012
, “
Dynamic Trajectory Planning of a Two-DOF Cable-Suspended Parallel Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
1476
1481
.
17.
Gosselin
,
C.
,
2012
, “
Global Planning of Dynamically Feasible Trajectories for Three-DOF Spatial Cable-Suspended Parallel Robots
,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer-Verlag
,
Berlin
, pp.
3
22
.
18.
Jiang
,
X.
, and
Gosselin
,
C.
,
2014
, “
Dynamically Feasible Trajectories for Three-DOF Planar Cable-Suspended Parallel Robots
,”
ASME
Paper No. DETC2014-34419.
19.
Gosselin
,
C.
, and
Foucault
,
S.
,
2014
, “
Dynamic Point-to-Point Trajectory Planning of a Two-DOF Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
728
736
.
20.
Jiang
,
X.
, and
Gosselin
,
C.
,
2016
, “
Dynamic Point-to-Point Trajectory Planning of a Three-DOF Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1550
1557
.
21.
Liang
,
D.
,
Song
,
Y.
, and
Sun
,
T.
,
2017
, “
Nonlinear Dynamic Modeling and Performance Analysis of a Redundantly Actuated Parallel Manipulator With Multiple Actuation Modes Based on FMD Theory
,”
Nonlinear Dyn.
,
89
(
1
), pp.
391
428
.
22.
Zhang
,
N.
, and
Shang
,
W.
,
2016
, “
Dynamic Trajectory Planning of a 3-DOF Under-Constrained Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
98
, pp.
21
35
.
23.
Zhang
,
N.
,
Shang
,
W.
, and
Cong
,
S.
,
2016
, “
Geometry-Based Trajectory Planning of a 3-3 Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
484
491
.
24.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2018
, “
Dynamically Feasible Elliptical Trajectories for Fully Constrained 3-DOF Cable-Suspended Parallel Robots
,”
Cable-Driven Parallel Robots
,
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer International Publishing
,
Québec, QC, Canada
, pp.
221
230
.
25.
Berti
,
A.
,
Gouttefarde
,
M.
, and
Carricato
,
M.
,
2016
, “
Dynamic Recovery of Cable-Suspended Parallel Robots After a Cable Failure
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
J.-P.
Merlet
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
337
344
.
26.
Schmidt
,
V.
,
Kraus
,
W.
,
Ho
,
W. Y.
,
Seon
,
J.
,
Pott
,
A.
,
Park
,
J.
, and
Verl
,
A.
,
2014
, “
Extending Dynamic Trajectories of Cable-Driven Parallel Robots as a Novel Robotic Roller Coaster
,”
41st International Symposium on Robotics
, Munich, Germany, June 2–3, pp.
367
373
.http://ieeexplore.ieee.org/document/6840154/
You do not currently have access to this content.