This paper for the first time investigates a family of line-symmetric Bricard linkages by means of two generated toroids and reveals their intersection that leads to a set of special Bricard linkages with various branches of reconfiguration. The discovery is made in the concentric toroid–toroid intersection. By manipulating the construction parameters of the toroids, all possible bifurcation points are explored. This leads to the common bi-tangent planes that present singularities in the intersection set. The study reveals the presence of Villarceau and secondary circles in the toroid–toroid intersection. Therefore, a way to reconfigure the Bricard linkage to a pair of different types of Bennett linkage is uncovered. Further, a linkage with two Bricard and two Bennett motion branches is explored. In addition, the paper reveals the Altmann linkage as a member of the family of special line-symmetric Bricard linkage studied in this paper. The method is applied to the plane-symmetric case in the following paper published together with this paper.

References

1.
Bricard
,
R.
,
1897
, “
Mémoire sur la thèorie de l'octaèdre articulè
,”
J. Pure Appl. Math.
,
3
, pp.
113
148
.
2.
Bricard
,
R.
,
1927
,
Leçons de cinématique
,
Gauthier-Villars
,
Paris, France
.
3.
Waldron
,
K. J.
,
1969
, “
Symmetric Overconstrained Linkages
,”
ASME J. Eng. Ind.
,
91
(
1
), pp.
158
162
.
4.
Hunt
,
K. H.
,
1967
, “
Screw Axes and Mobility in Spatial Mechanisms Via the Linear Complex
,”
J. Mech.
,
2
(
3
), pp.
307
327
.
5.
Phillips
,
J.
,
1990
,
Freedom in Machinery
(Screw Theory Exemplified, Vol.
2
),
Cambridge University Press
,
Cambridge, UK
.
6.
Baker
,
J. E.
,
1980
, “
An Analysis of the Bricard Linkages
,”
Mech. Mach. Theory
,
15
(
4
), pp.
267
286
.
7.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
Analysis of Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
69
74
.
8.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
New and Revised Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
75
82
.
9.
Dai
,
J.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
10.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2004
, “Screw System Analysis of Parallel Mechanisms and Applications to Constraint and Mobility Study,”
ASME
Paper No. DETC2004-57604.
11.
Phillips
,
J.
,
1984
,
Freedom in Machinery
(Introducing Screw Theory, Vol.
1
),
Cambridge University Press
,
Cambridge, UK
.
12.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
13.
Hunt
,
K. H.
,
1968
, “
Note on Complexes and Mobility
,”
J. Mech.
,
3
(
3
), pp.
199
202
.
14.
Baker
,
J. E.
, and
Wohlhart
,
K.
,
1994
, “
On the Single Screw Reciprocal to the General Line-Symmetric Six-Screw Linkage
,”
Mech. Mach. Theory
,
29
(
1
), pp.
169
175
.
15.
Jenkins
,
E. M.
,
Crossley
,
F. R. E.
, and
Hunt
,
K. H.
,
1969
, “
Gross Motion Attributes of Certain Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
91
(
1
), pp.
83
90
.
16.
Torfason
,
L. E.
, and
Crossley
,
F. R. E.
,
1971
, “
Use of the Intersection of Surfaces as a Method for Design of Spatial Mechanisms
,”
Third World Congress for the Theory of Machines and Mechanisms
, Kupari, Yugoslavia, Sept. 13–20, Paper No. B-20, pp.
247
258
.
17.
Torfason
,
L. E.
, and
Sharma
,
A. K.
,
1973
, “
Analysis of Spatial RRGRR Mechanisms by the Method of Generated Surfaces
,”
ASME J. Eng. Ind.
,
95
(
3
), pp.
704
708
.
18.
Shrivastava
,
A. K.
, and
Hunt
,
K. H.
,
1973
, “
Dwell Motion From Spatial Linkages
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
511
518
.
19.
Liu
,
Y.
, and
Zsombor-Murray
,
P.
,
1995
, “
Intersection Curves Between Quadric Surfaces of Revolution
,”
Trans. Can. Soc. Mech. Eng.
,
19
(
4
), pp.
435
453
.
20.
Hunt
,
K. H.
,
1973
, “
Constant-Velocity Shaft Couplings: A General Theory
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
455
464
.
21.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2012
, “
A Discontinuously Movable Constant Velocity Shaft Coupling of Koenigs Joint Type
,” Advances in Reconfigurable Mechanisms and Robots I, M. Z. J. S. Dai and X. Kong, eds., pp.
35
43
.
22.
Su
,
H. J.
, and
McCarthy
,
J. M.
,
2005
, “
Dimensioning a Constrained Parallel Robot to Reach a Set of Task Positions
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
4026
4030
.
23.
Fichter
,
E. F.
, and
Hunt
,
K. H.
,
1975
, “
The Fecund Torus, Its Bitangent-Circles and Derived Linkages
,”
Mech. Mach. Theory
,
10
(
2–3
), pp.
167
176
.
24.
López-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
, and
Pérez-Soto
,
G.
,
2016
, “
Reconfigurable Mechanisms From the Intersection of Surfaces
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021029
.
25.
López-Custodio
,
P. C.
,
Rico
,
J. M.
, and
Cervantes-Sánchez
,
J. J.
,
2017
, “
Local Analysis of Helicoid-Helicoid Intersections in Reconfigurable Linkages
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031008
.
26.
Dai
,
J. S.
, and
Gogu
,
G.
,
2016
, “
Special Issue on Reconfigurable Mechanisms: Morphing, Metamorphosis and Reconfiguration Through Constraint Variations and Reconfigurable Joints
,”
Mech. Mach. Theory
,
96
(
Pt. 2
), pp.
213
214
.
27.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Yan
,
H. S.
,
2009
, “
Reconfiguration Principles and Strategies for Reconfigurable Mechanisms
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
(
ReMAR 2009
), London, June 22–24, pp.
1
7
.http://ieeexplore.ieee.org/document/5173802/
28.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,”
Recent Advances in Robot Kinematics
,
J.
Lenarčič
and
V.
Parenti-Castelli
, eds.,
Dordrecht
,
The Netherlands
, pp.
359
368
.
29.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
3
), pp.
743
761
.
30.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
31.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2012
, “
Geometric Constraint and Mobility Variation of Two 3 SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.
32.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Lakmal
,
S.
,
2013
, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031004
.
33.
Li
,
S.
, and
Dai
,
J. S.
,
2012
, “
Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031004
.
34.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory
,
74
, pp.
188
201
.
35.
Kong
,
X.
,
2012
, “Type Synthesis of Variable Degrees-of-Freedom Parallel Manipulators With Both Planar and 3T1R Operation Modes,”
ASME
Paper No. DETC2012-70621.
36.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
37.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2014
, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain
,”
Mech. Mach. Theory
,
74
, pp.
1
9
.
38.
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Geometric Constraints and Motion Branch Variations for Reconfiguration of Single-Loop Linkages With Mobility One
,”
Mech. Mach. Theory
,
106
, pp.
16
29
.
39.
Zhang
,
K.
,
Müller
,
A.
, and
Dai
,
J. S.
,
2016
, “
A Novel Reconfigurable 7R Linkage With Multifurcation
,”
Advances in Reconfigurable Mechanisms and Robots II
,
X.
Ding
,
X.
Kong
, and
J. S.
Dai
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
3
14
.
40.
Qin
,
Y.
,
Dai
,
J.
, and
Gogu
,
G.
,
2014
, “
Multi-Furcation in a Derivative Queer-Square Mechanism
,”
Mech. Mach. Theory
,
81
(
11
), pp.
36
53
.
41.
López-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Pérez-Soto
,
G. I.
, and
Díez-Martínez
,
C. R.
,
2017
, “
Verification of the Higher Order Kinematic Analyses Equations
,”
Eur. J. Mech. A
,
61
, pp.
198
215
.
42.
Müller
,
A.
,
2016
, “
Local Kinematic Analysis of Closed-Loop Linkages Mobility, Singularities, and Shakiness
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041013
.
43.
Müller
,
A.
,
2005
, “
Geometric Characterization of the Configuration Space of Rigid Body Mechanisms in Regular and Singular Points
,”
ASME
Paper No. DETC2005-84712.
44.
Aimedee
,
F.
,
Gogu
,
G.
,
Dai
,
J.
,
Bouzgarrou
,
C.
, and
Bouton
,
N.
,
2016
, “
Systematization of Morphing in Reconfigurable Mechanisms
,”
Mech. Mach. Theory
,
96
(
Pt. 2
), pp.
215
224
.
45.
Kong
,
X.
,
2017
, “
Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
031004
.
46.
Song
,
C. Y.
,
Chen
,
Y.
, and
Chen
,
I.-M.
,
2013
, “
A 6R Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage
,”
Mech. Mach. Theory
,
70
, pp.
278
292
.
47.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
.
48.
Zhang
,
K.
, and
Dai
,
J.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
49.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Zoppi
,
M.
, and
Guest
,
S. D.
,
2016
, “
Reconfigurable Chains of Bifurcating Type III Bricard Linkages
,”
Advances in Reconfigurable Mechanisms and Robots II
,
X.
Ding
,
X.
Kong
, and
J. S.
Dai
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
3
14
.
50.
Qi
,
X.
,
Huang
,
H.
,
Miao
,
Z.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Rob.
,
139
(
2
), p.
022302
.
51.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.
52.
Myard
,
F. E.
,
1931
, “
Contribution á la géométrie des systèmes articulés
,”
Soc. Math. France
,
59
, pp.
183
210
.
53.
Bricard
,
R.
,
1925
, “
Démonstration élémentaires de propriétés fondamentales du tore
,”
Nouv. Ann. Math.
,
3
, pp.
308
313
.
54.
Lee
,
C.-C.
, and
Hervé
,
J. M.
,
2014
, “
Oblique Circular Torus, Villarceau Circles, and Four Types of Bennett Linkages
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
4
), pp.
742
752
.
55.
Bil
,
T.
,
2012
, “
Analysis of the Bennett Linkage in the Geometry of Tori
,”
Mech. Mach. Theory
,
53
, pp.
122
127
.
56.
Baker
,
J.
,
1984
, “
On 5-Revolute Linkages With Parallel Adjacent Joint Axes
,”
Mech. Mach. Theory
,
19
(
6
), pp.
467
475
.
57.
Bil
,
T.
, and
Budniak
,
Z.
,
2014
, “
Model of 5R Spatial Linkages in Geometry of Tori
,”
Int. J. Appl. Mech. Eng.
,
19
(
4
), pp.
823
830
.
58.
Bil
,
T.
,
2011
, “
Kinematic Analysis of a Universal Spatial Mechanism Containing a Higher Pair Based on Tori
,”
Mech. Mach. Theory
,
46
(
4
), pp.
412
424
.
59.
Chung
,
W. Y.
,
2005
, “
Mobility Analysis of RSSR Mechanisms by Working Volume
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
156
159
.
60.
López-Custodio
,
P. C.
,
Dai
,
J. S.
, and
Rico
,
J. M.
,
2018
, “Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Plane-Symmetric Case,”
ASME J. Mech. Rob.
,
10
(3), p. 031002.
61.
Müller
,
A.
,
2009
, “
Generic Mobility of Rigid Body Mechanisms
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1240
1255
.
62.
Müller
,
A.
,
2015
, “
Representation of the Kinematic Topology of Mechanisms for Kinematic Analysis
,”
Mech. Mach. Theory
,
6
, pp.
137
146
.
63.
Cox
,
D. A.
,
Little
,
J. B.
, and
O'Shea
,
D.
,
2007
,
Ideals, Varieties and Algorithms
,
Springer
,
New York
.
64.
Arponen
,
T.
,
Müller
,
A.
,
Piipponen
,
S.
, and
Tuomela
,
J.
,
2014
, “
Kinematical Analysis of Overconstrained and Underconstrained Mechanisms by Means of Computational Algebraic Geometry
,”
Meccanica
,
49
(
4
), pp.
843
862
.
65.
Liu
,
X.-M.
,
Liu
,
C.-Y.
,
Yong
,
J.-H.
, and
Paul
,
J.-C.
,
2011
, “
Torus/Torus Intersection
,”
Comput.-Aided Des. Appl.
,
8
(
3
), pp.
465
477
.
66.
Song
,
C.-Y.
,
Chen
,
Y.
, and
Chen
,
I.-M.
,
2014
, “
Kinematic Study of the Original and Revised General Line-Symmetric Bricard 6R Linkages
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031002
.
67.
Villarceau
,
Y.
,
1848
, “
Théorème sur le tore
,”
Nouv. Ann. Math.
,
7
, pp.
345
347
.
68.
Bennett
,
G. T.
,
1903
, “
A New Mechanism
,”
Engineering
,
76
, pp.
777
778
.
69.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2015
, “
The Metamorphic Bennett Linkages
,”
14th IFToMM World Congress
, Taipei, Taiwan, Oct. 25--30, pp. 394–399.
70.
Altmann
,
J. G.
,
1954
, “
Communications to Grodzinski P. and Mewen E.: Link Mechanisms in Modern Kinematics
,”
Proc. Inst. Mech. Eng.
,
168
(
1
), pp.
877
896
.
71.
Baker
,
J. E.
,
1993
, “
A Geometrico-Algebraic Exploration of Altmann's Linkage
,”
Mech. Mach. Theory
,
28
(
2
), pp.
249
260
.
72.
Baker
,
J. E.
,
2012
, “
On the Closure Modes of a Generalised Altmann Linkage
,”
Mech. Mach. Theory
,
52
, pp.
243
247
.
73.
Cui
,
L.
, and
Dai
,
J.
,
2011
, “
Axis Constraint Analysis and Its Resultant 6R Double-Centered Overconstrained Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031004
.
You do not currently have access to this content.