This paper for the first time reveals a set of special plane-symmetric Bricard linkages with various branches of reconfiguration by means of intersection of two generating toroids, and presents a complete theory of the branch reconfiguration of the Bricard plane-symmetric linkages. An analysis of the intersection of these two toroids reveals the presence of coincident conical singularities, which lead to design of the plane-symmetric linkages that evolve to spherical 4R linkages. By examining the tangents to the curves of intersection at the conical singularities, it is found that the linkage can be reconfigured between the two possible branches of spherical 4R motion without disassembling it and without requiring the usual special configuration connecting the branches. The study of tangent intersections between concentric singular toroids also reveals the presence of isolated points in the intersection, which suggests that some linkages satisfying the Bricard plane-symmetry conditions are actually structures with zero finite degrees-of-freedom (DOF) but with higher instantaneous mobility. This paper is the second part of a paper published in parallel by the authors in which the method is applied to the line-symmetric case.

References

References
1.
Bricard
,
R.
,
1897
, “
Mémoire sur la thèorie de l'octaèdre articulè
,”
J. Pure Appl. Math.
,
3
, pp.
113
150
.
2.
Bricard
,
R.
,
1927
,
Leçons de cinématique
,
Gauthier-Villars
,
Paris, France
.
3.
Hunt
,
K. H.
,
1967
, “
Screw Axes and Mobility in Spatial Mechanisms Via the Linear Complex
,”
J. Mech.
,
2
(
3
), pp.
307
327
.
4.
Phillips
,
J.
,
1990
,
Freedom in Machinery
(Screw Theory Exemplified, Vol.
2
),
Cambridge University Press
,
Cambridge, UK
.
5.
Baker
,
J. E.
,
1980
, “
An Analysis of the Bricard Linkages
,”
Mech. Mach. Theory
,
15
(4), pp.
267
286
.
6.
Dai
,
J. S.
, and
Gogu
,
G.
,
2016
, “
Special Issue on Reconfigurable Mechanisms: Morphing, Metamorphosis and Reconfiguration Through Constraint Variations and Reconfigurable Joints
,”
Mech. Mach. Theory
,
96
(
Pt. 2
), pp.
213
214
.
7.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Yan
,
H. S.
,
2009
, “
Reconfiguration Principles and Strategies for Reconfigurable Mechanisms
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
(
ReMAR
), London, June 22–24, pp.
1
7
.
8.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,”
Recent Advances in Robot Kinematics
,
J.
Lenarčič
and
V.
Parent-Castelli
, eds., Springer,
Dordrecht, The Netherlands
, pp.
359
368
.
9.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
3
), pp.
743
761
.
10.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME: J. Mech. Des.
,
121
(
3
), pp.
375
382
.
11.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2012
, “
Geometric Constraint and Mobility Variation of Two 3 SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.
12.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Lakmal
,
S.
,
2013
, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031004
.
13.
Li
,
S.
, and
Dai
,
J. S.
,
2012
, “
Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031004
.
14.
Qin
,
Y.
,
Dai
,
J.
, and
Gogu
,
G.
,
2014
, “
Multi-Furcation in a Derivative Queer-Square Mechanism
,”
Mech. Mach. Theory
,
81
(
11
), pp.
36
53
.
15.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2014
, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain
,”
Mech. Mach. Theory
,
74
, pp.
1
9
.
16.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory
,
74
, pp.
188
201
.
17.
Kong
,
X.
,
2012
, “Type Synthesis of Variable Degrees-of-Freedom Parallel Manipulators With Both Planar and 3T1R Operation Modes,”
ASME
Paper No. DETC2012-70621.
18.
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Geometric Constraints and Motion Branch Variations for Reconfiguration of Single-Loop Linkages With Mobility One
,”
Mech. Mach. Theory
,
106
, pp.
16
29
.
19.
López-Custodio
,
P. C.
,
Rico
,
J. M.
, and
Cervantes-Sánchez
,
J. J.
,
2017
, “
Local Analysis of Helicoid-Helicoid Intersections in Reconfigurable Linkages
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031008
.
20.
Arponen
,
T.
,
Müller
,
A.
,
Piipponen
,
S.
, and
Tuomela
,
J.
,
2014
, “
Kinematical Analysis of Overconstrained and Underconstrained Mechanisms by Means of Computational Algebraic Geometry
,”
Meccanica
,
49
(
4
), pp.
843
862
.
21.
Zhang
,
K.
,
Müller
,
A.
, and
Dai
,
J. S.
,
2016
, “
A Novel Reconfigurable 7R Linkage With Multifurcation
,”
Advances in Reconfigurable Mechanisms and Robots II
,
X.
Ding
,
X.
Kong
, and
J. S.
Dai
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
3
14
.
22.
Aimedee
,
F.
,
Gogu
,
G.
,
Dai
,
J.
,
Bouzgarrou
,
C.
, and
Bouton
,
N.
,
2016
, “
Systematization of Morphing in Reconfigurable Mechanisms
,”
Mech. Mach. Theory
,
96
(
Pt. 2
), pp.
215
224
.
23.
López-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Pérez-Soto
,
G. I.
, and
Díez-Martínez
,
C. R.
,
2017
, “
Verification of the Higher Order Kinematic Analyses Equations
,”
Eur. J. Mech. A
,
61
, pp.
198
215
.
24.
Müller
,
A.
,
2016
, “
Local Kinematic Analysis of Closed-Loop Linkages Mobility, Singularities, and Shakiness
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041013
.
25.
Müller
,
A.
,
2005
, “
Geometric Characterization of the Configuration Space of Rigid Body Mechanisms in Regular and Singular Points
,”
ASME
Paper No. DETC2005-84712.
26.
Kong
,
X.
,
2017
, “
Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions
,”
ASME J. Mech. Rob.
,
9
(5), p. 051002.
27.
Song
,
C. Y.
,
Chen
,
Y.
, and
Chen
,
I.-M.
,
2013
, “
A 6R Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage
,”
Mech. Mach. Theory
,
70
, pp.
278
292
.
28.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
.
29.
Zhang
,
K.
, and
Dai
,
J.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
30.
Jenkins
,
E. M.
,
Crossley
,
F. R. E.
, and
Hunt
,
K. H.
,
1969
, “
Gross Motion Attributes of Certain Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
91
(
1
), pp.
83
90
.
31.
Torfason
,
L. E.
, and
Crossley
,
F. R. E.
,
1971
, “
Use of the Intersection of Surfaces as a Method for Design of Spatial Mechanisms
,”
Third World Congress for the Theory of Machines and Mechanisms,
Kupari, Yugoslavia, Sept. 13–20, Paper No. B-20.
32.
Hunt
,
K. H.
,
1973
, “
Constant-Velocity Shaft Couplings: A General Theory
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
455
464
.
33.
Fichter
,
E. F.
, and
Hunt
,
K. H.
,
1975
, “
The Fecund Torus, Its Bitangent-Circles and Derived Linkages
,”
Mech. Mach. Theory
,
10
(
2–3
), pp.
167
176
.
34.
Shrivastava
,
A. K.
, and
Hunt
,
K. H.
,
1973
, “
Dwell Motion From Spatial Linkages
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
511
518
.
35.
Torfason
,
L. E.
, and
Sharma
,
A. K.
,
1973
, “
Analysis of Spatial RRGRR Mechanisms by the Method of Generated Surfaces
,”
ASME J. Eng. Ind.
,
95
(
3
), pp.
704
708
.
36.
Su
,
H. J.
, and
McCarthy
,
J. M.
,
2005
, “
Dimensioning a Constrained Parallel Robot to Reach a Set of Task Positions
,” IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
4026
4030
.
37.
Liu
,
Y.
, and
Zsombor-Murray
,
P.
,
1995
, “
Intersection Curves Between Quadric Surfaces of Revolution
,”
Trans. Can. Soc. Mech. Eng.
,
19
(
4
), pp.
435
453
.
38.
López-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
, and
Pérez-Soto
,
G.
,
2016
, “
Reconfigurable Mechanisms From the Intersection of Surfaces
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021029
.
39.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2012
, “
A Discontinuously Movable Constant Velocity Shaft Coupling of Koenigs Joint Type
,”
Advances in Reconfigurable Mechanisms and Robots I
, M. Zoppi, J. S. Dai, and X. Kong, eds., pp.
35
43
.
40.
Phillips
,
J.
,
1984
,
Freedom in Machinery
(Introducing Screw Theory, Vol.
1
),
Cambridge University Press
,
Cambridge, UK
.
41.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
42.
Hunt
,
K. H.
,
1968
, “
Note on Complexes and Mobility
,”
J. Mech.
,
3
(
3
), pp.
199
202
.
43.
Chen
,
Y.
, and
You
,
Z.
,
2009
, “
Two-Fold Symmetrical 6R Foldable Frame and Its Bifurcations
,”
Int. J. Solids Struct.
,
46
(
25
), pp.
4504
4514
.
44.
López-Custodio
,
P. C.
,
Dai
,
J. S.
, and
Rico
,
J. M.
,
2017
, “
Branch Reconfiguration of Bricard Loops Based on Toroids Intersections: Line-Symmetric Case
,” (submitted).
45.
Liu
,
X.-M.
,
Liu
,
C.-Y.
,
Yong
,
J.-H.
, and
Paul
,
J.-C.
,
2011
, “
Torus/Torus Intersection
,”
Comput.-Aided Des. Appl.
,
8
(
3
), pp.
465
477
.
46.
Krivoshapko
,
S. N.
, and
Ivanov
,
V. N.
,
2015
,
Encyclopedia of Analytical Surfaces
,
Springer
, Cham,
Switzerland
.
47.
Thorpe
,
J. A.
,
1979
,
Elementary Topics in Differential Geometry
,
Springer-Verlag
,
New York
.
48.
Dai, J. S., and Rees Jones, J., 2001, “Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications,”
Mech. Mach. Theory
,
36
(5), pp. 633–651.
49.
Dai, J. S., and Rees Jones, J., 2002, “Null-Space Construction Using Cofactors From a Screw Algebra Context,”
Proc. R. Soc. A Math., Phys. Eng. Sci.
,
458
(2024), pp. 1845–1866.
50.
Whitney
,
H.
,
1965
, “
Tangents to an Analytic Variety
,”
Ann. Math.
,
81
(3), pp.
496
549
.
51.
Lerbet
,
J.
,
1998
, “
Analytic Geometry and Singularities of Mechanisms
,”
Z. Angew. Math. Mech.
,
78
(
10
), pp.
687
694
.
52.
Müller
,
A.
,
2002
, “
Local Analysis of Singular Configuration of Open and Closed Loop Manipulators
,”
Multibody Syst. Dyn.
,
8
(
3
), pp.
297
326
.
53.
Müller
,
A.
,
2014
, “
Higher Derivatives of the Kinematic Mapping and Some Applications
,”
Mech. Mach. Theory
,
76
, pp.
70
85
.
54.
Diez-Martínez
,
C. R.
,
Rico
,
J. M.
, and
Cervantes-Sánchez
,
J. J.
,
2006
, “
Mobility and Connectivity in Multiloop Linkages
,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
B.
Roth
, eds.,
Springer
, Dordrecht,
The Netherlands
, pp.
455
464
.
55.
Connelly
,
R.
, and
Servatius
,
H.
,
1994
, “
Higher-Order Rigidity—What is the Proper Definition?
,”
Discrete Comput. Geom.
,
11
(
2
), pp.
193
200
.
56.
Dai, J. S., and Shah, P., 2002, “Orientation Capability of Planar Serial Manipulators Using Rotatability Analysis Based on Workspace Decomposition,”
Proc. Inst. Mech. Eng., Part C
,
216
(3), pp. 275–288.
57.
Gupta
,
K. C.
, and
Ma
,
R.
,
1995
, “
A Direct Rotatability Criterion for Spherical Four-Bar Linkages
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
597–600
.
58.
Shah, P., and Dai, J. S., 2002 “Orientation Capability Representation and Application to Manipulator Analysis and Synthesis,”
Robotica
,
20
(5), pp. 529–535.
59.
Waldron
,
K. J.
,
1976
, “
Elimination of the Branch Problem in Graphical Burmester Mechanism Synthesis for Four Finitely Separated Positions
,”
ASME J. Eng. Ind.
,
98
(
1
), pp.
176
182
.
60.
Reinholtz
,
C. F.
,
Sandor
,
G. N.
, and
Duffy
,
J.
,
1986
, “
Branching Analysis of Spherical RRRR and Spatial RCCC Mechanisms
,”
J. Mech. Transm. Autom. Des.
,
108
(
4
), pp.
481
486
.
You do not currently have access to this content.