This paper introduces an approach for decomposing exploration tasks among multiple unmanned surface vehicles (USVs) in congested regions. In order to ensure effective distribution of the workload, the algorithm has to consider the effects of the environmental constraints on the USVs. The performance of a USV is influenced by the surface currents, risk of collision with the civilian traffic, and varying depths due to tides and weather. The team of USVs needs to explore a certain region of the harbor and we need to develop an algorithm to decompose the region of interest into multiple subregions. The algorithm overlays a two-dimensional grid upon a given map to convert it to an occupancy grid, and then proceeds to partition the region of interest among the multiple USVs assigned to explore the region. During partitioning, the rate at which each USV is able to travel varies with the applicable speed limits at the location. The objective is to minimize the time taken for the last USV to finish exploring the assigned area. We use the particle swarm optimization (PSO) method to compute the optimal region partitions. The method is verified by running simulations in different test environments. We also analyze the performance of the developed method in environments where speed restrictions are not known in advance.

References

References
1.
Shah
,
B. C.
,
Švec
,
P.
,
Bertaska
,
I. R.
,
Klinger
,
W.
,
Sinisterra
,
A. J.
,
von Ellenrieder
,
K.
,
Dhanak
,
M.
, and
Gupta
,
S. K.
,
2016
, “
Resolution-Adaptive Risk-Aware Trajectory Planning for Surface Vehicles Operating in Congested Civilian Traffic
,”
Auton. Robots
,
40
(
7
), pp.
1139
1163
.
2.
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2016
, “
Speeding Up A* Search on Visibility Graphs Defined Over Quadtrees to Enable Long Distance Path Planning for Unmanned Surface Vehicles
,”
International Conference on Automated Planning and Scheduling
(
ICAPS
), London, June 12–17, pp.
527
535
.https://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13155/12717
3.
Bertaska
,
I. R.
,
Shah
,
B. C.
,
von Ellenrieder
,
K.
,
Švec
,
P.
,
Klinger
,
W.
,
Sinisterra
,
A. J.
,
Dhanak
,
M.
, and
Gupta
,
S. K.
,
2015
, “
Experimental Evaluation of Automatically-Generated Behaviors for USV Operations
,”
Ocean Eng.
,
106
, pp.
496
514
.
4.
Švec
,
P.
,
Thakur
,
A.
,
Raboin
,
E.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2014
, “
Target Following With Motion Prediction for Unmanned Surface Vehicle Operating in Cluttered Environments
,”
Auton. Robots
,
36
(
4
), pp.
383
405
.
5.
Raboin
,
E.
,
Švec
,
P.
,
Nau
,
D. S.
, and
Gupta
,
S. K.
,
2015
, “
Model-Predictive Asset Guarding by Team of Autonomous Surface Vehicles in Environment With Civilian Boats
,”
Auton. Robots
,
38
(
3
), pp.
261
282
.
6.
Sheng
,
W.
,
Yang
,
Q.
,
Tan
,
J.
, and
Xi
,
N.
,
2006
, “
Distributed Multi-Robot Coordination in Area Exploration
,”
Rob. Auton. Syst.
,
54
(
12
), pp.
945
955
.
7.
Burgard
,
W.
,
Moors
,
M.
,
Stachniss
,
C.
, and
Schneider
,
F. E.
,
2005
, “
Coordinated Multi-Robot Exploration
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
376
386
.
8.
Grocholsky
,
B.
,
Keller
,
J.
,
Kumar
,
V.
, and
Pappas
,
G.
,
2006
, “
Cooperative Air and Ground Surveillance
,”
IEEE Rob. Autom. Mag.
,
13
(
3
), pp.
16
25
.
9.
Roy
,
N.
, and
Dudek
,
G.
,
2001
, “
Collaborative Robot Exploration and Rendezvous: Algorithms, Performance Bounds and Observations
,”
Auton. Robots
,
11
(
2
), pp.
117
136
.
10.
Shriyam
,
S.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2017
, “On-Line Task Decomposition for Collaborative Surveillance of Marine Environment by a Team of Unmanned Surface Vehicles,”
ASME
Paper No. DETC2017-67972.
11.
Pavone
,
M.
,
Arsie
,
A.
,
Frazzoli
,
E.
, and
Bullo
,
F.
,
2011
, “
Distributed Algorithms for Environment Partitioning in Mobile Robotic Networks
,”
IEEE Trans. Autom. Control
,
56
(
8
), pp.
1834
1848
.
12.
Lien
,
J.-M.
, and
Amato
,
N. M.
,
2006
, “
Approximate Convex Decomposition of Polygons
,”
Comput. Geom.
,
35
(
1–2
), pp.
100
123
.
13.
Jager
,
M.
, and
Nebel
,
B.
,
2002
, “
Dynamic Decentralized Area Partitioning for Cooperating Cleaning Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, DC, May 11–15, pp.
3577
3582
.
14.
Ahmadi
,
M.
, and
Stone
,
P.
,
2006
, “
A Multi-Robot System for Continuous Area Sweeping Tasks
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Orlando, FL, May 15–19, pp.
1724
1729
.
15.
Choset
,
H.
,
2001
, “
Coverage for Robotics–A Survey of Recent Results
,”
Ann. Math. Artif. Intell.
,
31
(
1
), pp.
113
126
.
16.
Zelinsky
,
A.
,
Jarvis
,
R. A.
,
Byrne
,
J.
, and
Yuta
,
S.
,
1993
, “
Planning Paths of Complete Coverage of an Unstructured Environment by a Mobile Robot
,”
International Conference on Advanced Robotics
(
ICAR
), Tokyo, Japan, Nov. 1–2, pp.
533
538
.http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7A4019C71C14501B4BCBC1C1FAA496A3?doi=10.1.1.53.7617&rep=rep1&type=pdf
17.
Galceran
,
E.
, and
Carreras
,
M.
,
2013
, “
A Survey on Coverage Path Planning for Robotics
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1258
1276
.
18.
Zheng
,
X.
, and
Koenig
,
S.
,
2007
, “
Robot Coverage of Terrain With Non-Uniform Traversability
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Diego, CA, Oct. 29–Nov. 2, pp.
3757
3764
.
19.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE
International Conference on Neural Networks
, Perth, Australia, Nov. 27–Dec. 1, pp.
1942
1948
.
You do not currently have access to this content.