This paper presents the design and integration of a two-digit robotic exoskeleton glove mechanism. The proposed glove is designed to assist the user with grasping motions, such as the pincer grasp, while maintaining a natural coupling relationship among the finger and thumb joints, resembling that of a normal human hand. The design employs single degree-of-freedom (DOF) linkage mechanisms to achieve active flexion and extension of the index finger and thumb. This greatly reduces the overall weight and size of the system making it ideal for prolonged usage. The paper describes the design, mathematical modeling of the proposed system, detailed electromechanical design, and software architecture of the integrated prototype. The prototype is capable of recording information about the index finger and thumb movements, interaction forces exerted by the finger/thumb on the exoskeleton, and can provide feedback through vibration. In addition, the glove can serve as a standalone device for rehabilitation purposes, such as assisting in achieving tip or pulp pinch. The paper concludes with an experimental validation of the proposed design by comparing the motion produced using the exoskeleton glove on a wooden mannequin with that of a natural human hand.

References

References
1.
MANUS VR, 2014, “
The Pinnacle of VR Controllers
,” MANUS VR, Eindhovan, The Netherlands, accessed Dec. 26, 2017, www.manus-vr.com
2.
CyberGlove Systems,
2009
, “CyberGrasp,” CyberGlove Systems Inc., San Jose, CA, accessed Sept. 14, 2017, http://www.cyberglovesystems.com/cybergrasp/
3.
Tatsumi
,
H.
,
Murai
,
Y.
,
Sekita
,
I.
,
Tokumasu
,
S.
, and
Miyakawa
,
M.
,
2016
, “
Cane Walk in the Virtual Reality Space Using Virtual Haptic Sensing: Toward Developing Haptic VR Technologies for the Visually Impaired
,”
IEEE International Conference on Systems, Man, and Cybernetics
(
SMC
), Kowloon, China, Oct. 9–12, pp.
2360
2365
.
4.
Ito
,
S.
,
Kawasaki
,
H.
,
Ishigure
,
Y.
,
Natsume
,
M.
,
Mouri
,
T.
, and
Nishimoto
,
Y.
,
2011
, “
A Design of Fine Motion Assist Equipment for Disabled Hand in Robotic Rehabilitation System
,”
J. Franklin Inst.
,
348
(
1
), pp.
79
89
.
5.
Teixeira
,
C. D. C.
,
Marx
,
F. C.
, and De
Oliveira
,
J. C.
,
2016
, “
A Haptic Rehabilitation System
,”
18th Symposium on Virtual and Augmented Reality
(
SVR
), Gramado, Brazil, June 21–24, pp.
188
192
.
6.
Heo
,
P.
,
Gu
,
G. M.
,
Jin Lee
,
S.
,
Rhee
,
K.
, and
Kim
,
J.
,
2012
, “
Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
807
824
.
7.
Ma
,
Z.
, and
Ben-Tzvi
,
P.
,
2013
, “
Tendon Transmission Efficiency of a Two-Finger Haptic Glove
,”
IEEE International Symposium on Robotic and Sensors Environments
(
ROSE
), Washington, DC, Oct. 21–23, pp.
13
18
.
8.
Ho
,
N. S. K.
,
Tong, K. Y.
,
Hu, X. L.
,
Fung, K. L.
,
Wei, X. J.
,
Rong, W.
, and
Susanto, E. A.
,
2011
, “
An EMG-Driven Exoskeleton Hand Robotic Training Device on Chronic Stroke Subjects: Task Training System for Stroke Rehabilitation
,” IEEE International Conference on Rehabilitation Robotics (
ICORR
), Zurich, Switzerland, June 29–July 1, pp. 1–5.
9.
Iqbal
,
J.
,
Khan
,
H.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2014
, “
A Novel Exoskeleton Robotic System for Hand Rehabilitation—Conceptualization to Prototyping
,”
Biocybern. Biomed. Eng.
,
34
(
2
), pp.
79
89
.
10.
Arata
,
J.
,
Ohmoto
,
K.
,
Gassert
,
R.
,
Lambercy
,
O.
,
Fujimoto
,
H.
, and
Wada
,
I.
,
2013
, “
A New Hand Exoskeleton Device for Rehabilitation Using a Three-Layered Sliding Spring Mechanism
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
3902
3907
.
11.
Worsnopp
,
T. T.
,
Peshkin
,
M. A.
,
Colgate
,
J. E.
, and
Kamper
,
D. G.
,
2007
, “
An Actuated Finger Exoskeleton for Hand Rehabilitation Following Stroke
,”
IEEE Tenth International Conference on Rehabilitation Robotics
(
ICORR
), Noordwijk, The Netherlands, June 13–15, pp.
896
901
.
12.
Takagi
,
M.
,
Iwata
,
K.
,
Takahashi
,
Y.
,
Yamamoto
,
S. I.
,
Koyama
,
H.
, and
Komeda
,
T.
,
2009
, “
Development of a Grip Aid System Using Air Cylinders
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
2312
2317
.
13.
Ertas
,
I. H.
,
Hocaoglu
,
E.
,
Barkana
,
D. E.
, and
Patoglu
,
V.
,
2009
, “
Finger Exoskeleton for Treatment of Tendon Injuries
,”
11th IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Kyoto, Japan, June 23–26, pp.
194
201
.
14.
Hasegawa
,
Y.
,
Mikami
,
Y.
,
Watanabe
,
K.
, and
Sankai
,
Y.
,
2008
, “
Five-Fingered Assistive Hand With Mechanical Compliance of Human Finger
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Pasadena, CA, May 19–23, pp.
718
724
.
15.
Zhou
,
M. A.
,
Ben-Tzvi
,
P.
, and
Danoff
,
J.
,
2015
, “
Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(12), pp.
1323
1332
.
16.
Ben-Tzvi
,
P.
,
Danoff
,
J.
, and
Ma
,
Z.
,
2016
, “
The Design Evolution of a Sensing and Force-Feedback Exoskeleton Robotic Glove for Hand Rehabilitation Application
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051019
.
17.
Ben-Tzvi
,
P.
, and
Ma
,
Z.
,
2015
, “
Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
6
), pp.
992
1002
.
18.
Ma
,
Z.
, and
Ben-Tzvi
,
P.
,
2011
, “An Admittance-Type Haptic Device—RML Glove,”
ASME
Paper No. IMECE2011-64108.
19.
Ma
,
Z.
, and
Ben-Tzvi
,
P.
,
2015
, “
Design and Optimization of a Five-Finger Haptic Glove Mechanism
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041008
.
20.
In
,
H.
, and
Cho
,
K.
,
2015
, “
Exo-Glove: Soft Wearable Robot for the Hand Using Soft Tendon Routing System
,”
IEEE Rob. Autom.
,
22
(1), pp.
97
105
.
21.
Lee
,
S. W.
,
Landers
,
K. A.
, and
Park
,
H. S.
,
2014
, “
Development of a Biomimetic Hand Exotendon Device (BiomHED) for Restoration of Functional Hand Movement Post-Stroke
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
4
), pp.
886
898
.
22.
Nycz
,
C. J.
,
Delph
,
M. A.
, and
Fischer
,
G. S.
,
2015
, “
Modeling and Design of a Tendon Actuated Soft Robotic Exoskeleton for Hemiparetic Upper Limb Rehabilitation
,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Milan, Italy, Aug. 25–29, pp.
3889
3892
.
23.
Hasegawa
,
Y.
,
Tokita
,
J.
,
Kamibayashi
,
K.
, and
Sankai
,
Y.
,
2011
, “
Evaluation of Fingertip Force Accuracy in Different Support Conditions of Exoskeleton
,” IEEE International Conference on Robotics and Automation (
ICRA
), Shanghai, China, May 9–13, pp.
680
685
.
24.
Koo
,
I.
,
Byunghyun Kang
,
B.
, and
Cho
,
K.-J.
,
2013
, “
Development of Hand Exoskeleton Using Pneumatic Artificial Muscle Combined With Linkage
,”
J. Korean Soc. Precis. Eng.
,
11
(
11
), pp.
1217
1224
.
25.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Rob. Auton. Syst.
,
73
, pp.
135
143
.
26.
Tadano
,
K.
,
Akai
,
M.
,
Kadota
,
K.
, and
Kawashima
,
K.
,
2010
, “
Development of Grip Amplified Glove Using Bi-Articular Mechanism With Pneumatic Artificial Rubber Muscle
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
2363
2368
.
27.
Liu
,
M.
, and
Xiong
,
C.
,
2014
, “
Synergistic Characteristic of Human Hand During Grasping Tasks in Daily Life
,” International Conference on Intelligent Robotics and Applications (ICIRA), Guangzhou, China, Dec. 17–20, pp.
67
76
.
28.
Hook
,
W. E.
, and
Stanley
,
J. K.
,
1986
, “
Assessment of Thumb to Index Pulp to Pulp Pinch Grip Strengths
,”
J. Hand Surg. Am.
,
11
(
1
), pp.
91
92
.
29.
Hemmi
,
K.
, and
Inoue
,
K.
,
2000
, “
A Proposal of Three Dimensional Movement Model for Index Finger and Thumb
,”
Fourth Asia-Pacific Conference on Control and Measurement
, Guilin, China, July 9–12, pp. 241–246.
30.
Hara
,
A.
,
Yamauchi
,
Y.
, and
Kusunose
,
K.
,
1994
, “
Analysis of Thumb and Index Finger Joints During Pinching Motion and Writing a Cross, as Measured by Electrogoniometers
,” Clinical Biomechanics and Related Research, Y. Hirasawa, C. B. Sledge, and S. L.-Y. Woo, eds., Springer, Tokyo, Japan, pp.
282
293
.
31.
Bekey
,
G. A.
,
Tomovic
,
R.
, and
Zeljkovic
,
I.
,
1990
, “
Control Architecture for the Belgrade/USC Hand
,”
Dexterous Robot Hands
, S. T. Venkataraman and T. Iberall, eds., Springer, New York, pp. 136–149.
32.
Ma
,
Z.
, and
Ben-Tzvi
,
P.
,
2015
, “
RML Glove-an Exoskeleton Glove Mechanism With Haptics Feedback
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
641
652
.
33.
Yu
,
C.
, and
Peng
,
Q.
,
2006
, “
Robust Recognition of Checkerboard Pattern for Camera Calibration
,”
Opt. Eng.
,
45
(
9
), p.
93201
.
34.
Pratt
,
J.
,
Krupp
,
B.
,
Morse
,
C.
,
Pratt
,
J.
, and
Krupp
,
B.
,
2002
, “
Feature Series Elastic Actuators for High Fidelity Force Control
,”
Ind. Rob: Int. J.
,
29
(
3
), pp.
234
241
.
35.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Pittsburgh, PA, Aug. 5–9, pp.
399
406
.
You do not currently have access to this content.