This paper presents the design and development of a new type of piezoelectric-driven robot, which consists of a piezoelectric unimorph actuator integrated as part of the structure of a four-bar linkage to generate locomotion. The unimorph actuator replaces the input link of the four-bar linkage, and motion is generated at the coupler link due to the actuator deflection. A dimensional synthesis approach is proposed for the design of four-bar linkage that amplifies the small displacement of the piezoelectric actuator at the coupler link. The robot consists of two such piezo-driven four-bar linkages, and its gait cycle is described. The robot's speed is derived through kinematic modeling and experimentally verified using a fabricated prototype. The robot prototype's performance in terms of its payload capability and nominal operating power is also characterized experimentally. These results will be important for developing a motion planning control strategy for a autonomous robot locomotion, which will be part of future work.

References

References
1.
Sahai
,
R.
,
Avadhanula
,
S.
,
Groff
,
R.
,
Steltz
,
E.
,
Wood
,
R.
, and
Fearing
,
R. S.
,
2006
, “
Towards a 3g Crawling Robot Through the Integration of Microrobot Technologies
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Orlando, FL, May 15–19, pp.
296
302
.
2.
Ho
,
T.
, and
Lee
,
S.
,
2009
, “
Implementation of a Piezoelectrically Actuated Self-Contained Quadruped Robot
,” SPIE Defense, Security, and Sensing, Orlando, FL, Apr. 15–19, Paper No.
73320E
.
3.
Yoon
,
K. J.
,
Shin
,
S.
,
Park
,
H. C.
, and
Goo
,
N. S.
,
2002
, “
Design and Manufacture of a Lightweight Piezo-Composite Curved Actuator
,”
Smart Mater. Struct.
,
11
(
1
), p.
163
.
4.
Baisch
,
A. T.
,
2013
, “
Design, Manufacturing, and Locomotion Studies of Ambulatory Micro-Robots
,” Ph.D. thesis, Harvard University, Cambridge, MA.https://dash.harvard.edu/handle/1/11124832
5.
Wood
,
R. J.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2005
, “
Optimal Energy Density Piezoelectric Bending Actuators
,”
Sens. Actuators A: Phys.
,
119
(
2
), pp.
476
488
.
6.
Avirovik
,
D.
,
Butenhoff
,
B.
, and
Priya
,
S.
,
2014
, “
Millipede-Inspired Locomotion Through Novel U-Shaped Piezoelectric Motors
,”
Smart Mater. Struct.
,
23
(
3
), p.
037001
.
7.
Hariri
,
H.
,
Bernard
,
Y.
, and
Razek
,
A.
,
2015
, “
Dual Piezoelectric Beam Robot: The Effect of Piezoelectric Patches Positions
,”
J. Intell. Mater. Syst. Struct.
,
26
(
18
), pp.
2577
2590
.
8.
Rios
,
S. A.
,
Fleming
,
A. J.
, and
Yong
,
Y. K.
,
2017
, “
Miniature Resonant Ambulatory Robot
,”
IEEE Rob. Autom. Lett.
,
2
(
1
), pp.
337
343
.
9.
Muscato
,
G.
,
2004
, “
The Collective Behavior of Piezoelectric Walking Microrobots: Experimental Results
,”
Intell. Autom. Soft Comput.
,
10
(
4
), pp.
267
276
.
10.
Simu
,
U.
, and
Johansson
,
S.
,
2006
, “
Analysis of Quasi-Static and Dynamic Motion Mechanisms for Piezoelectric Miniature Robots
,”
Sens. Actuators A: Phys.
,
132
(
2
), pp.
632
642
.
11.
Son
,
K. J.
,
Kartik
,
V.
,
Wickert
,
J. A.
, and
Sitti
,
M.
,
2006
, “
An Ultrasonic Standing-Wave-Actuated Nano-Positioning Walking Robot: Piezoelectric-Metal Composite Beam Modeling
,”
J. Vib. Control
,
12
(
12
), pp.
1293
1309
.
12.
Hariri
,
H. H.
,
Soh
,
G. S.
,
Foong
,
S. H.
,
Wood
,
K. L.
, and
Otto
,
K.
,
2015
, “
Miniature Piezoelectric Mobile Robot Driven by Standing Wave
,”
14th IFToMM World Congress
, Taipei, Taiwan, Oct. 25–30, pp.
325
330
.
13.
Hariri
,
H. H.
,
Prasetya
,
L. A.
,
Foong
,
S.
,
Soh
,
G. S.
,
Otto
,
K. N.
, and
Wood
,
K. L.
,
2016
, “
A Tether-Less Legged Piezoelectric Miniature Robot Using Bounding Gait Locomotion for Bidirectional Motion
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Stockholm, Sweden, May 16–21, pp.
4743
4749
.
14.
Varma
,
V. K.
, and
Dixon
,
W. E.
,
2002
, “
Design of a Piezoelectric Meso-Scale Mobile Robot: A Compliant Amplification Approach
,”
IEEE International Conference on Robotics and Automation (ICRA)
), Washington, DC, May 11–15, pp.
1137
1142
.
15.
Ozcan
,
O.
,
Baisch
,
A. T.
,
Ithier
,
D.
, and
Wood
,
R. J.
,
2014
, “
Powertrain Selection for a Biologically-Inspired Miniature Quadruped Robot
,”
IEEE International Conference on Robotics and Automation (ICRA)
), Hong Kong, China, May 31–June 7, pp.
2398
2405
.
16.
Baisch
,
A. T.
,
Sreetharan
,
P. S.
, and
Wood
,
R. J.
,
2010
, “
Biologically-Inspired Locomotion of a 2g Hexapod Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Taipei, Taiwan, Oct. 18–22, pp.
5360
5365
.
17.
Goldfarb
,
M.
,
Gogola
,
M.
,
Fischer
,
G.
, and
Garcia
,
E.
,
2001
, “
Development of a Piezoelectrically-Actuated Mesoscale Robot Quadruped
,”
J. Micromechatronics
,
1
(
3
), pp.
205
219
.
18.
Sitti
,
M.
,
2003
, “
Piezoelectrically Actuated Four-Bar Mechanism With Two Flexible Links for Micromechanical Flying Insect Thorax
,”
IEEE/ASME Trans. Mechatronics
,
8
(
1
), pp.
26
36
.
19.
Ballas
,
R. G.
,
2007
,
Piezoelectric Multilayer Beam Bending Actuators: Static and Dynamic Behavior and Aspects of Sensor Integration
,
Springer Science & Business Media
, New York.
20.
Hariri
,
H.
,
Bernard
,
Y.
, and
Razek
,
A.
,
2011
, “
Analytical and Finite Element Model for Unimorph Piezoelectric Actuator: Actuator Design
,”
Sixth International Conference on Electroceramics for End-Users
, Sestriere, Italy, Feb. 28–Mar. 2, pp.
71
75
.https://www.scribd.com/document/106373263/Analytical-and-finite-element-model-for-unimorph-piezoelectric-actuator-Actuator-design
21.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
,
Courier Corporation
,
North Chelmsford, MA
.
22.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
, “
Geometric Design of Linkages
,”
Interdisciplinary Applied Mathematics
,
2nd ed.
,
Springer Science & Business Media
, New York.
23.
Noliac, 2017, “
Noliac Acquired by CTS
,” Noliac, Denmark, UK, accessed Jan. 19, 2017, http://www.noliac.com
24.
Nashif
,
A. D.
,
Jones
,
D. I.
, and
Henderson
,
J. P.
,
1985
,
Vibration Damping
,
Wiley
, New York.
25.
Yang
,
Y.
,
Lemaire-Semail
,
B.
,
Giraud
,
F.
,
Amberg
,
M.
,
Zhang
,
Y.
, and
Giraud-Audine
,
C.
,
2015
, “
Power Analysis for the Design of a Large Area Ultrasonic Tactile Touch Panel
,”
Eur. Phys. J. Appl. Phys.
,
72
(
1
), p.
11101
.
You do not currently have access to this content.