The subject of this paper is twofold: the kinematics and the isotropic design of six degrees-of-freedom (DOF), three-CCC parallel-kinematics machines (PKMs). Upon proper embodiment and dimensioning, the PKMs discussed here, with all actuators mounted on the base, exhibit interesting features, not found elsewhere. One is the existence of an isotropy locus, as opposed to isolated isotropy points in the workspace, thereby guaranteeing the accuracy and the homogeneity of the motion of the moving platform (MP) along different directions within a significantly large region of their workspace. The conditions leading to such a locus are discussed in depth; several typical isotropic designs are brought to the limelight. Moreover, the kinematic analysis shows that rotation and translation of the MP are decoupled, which greatly simplifies not only the kinetostatic analysis but also, most importantly, their control. Moreover, it is shown that the singularity loci of this class of mechanism are determined only by the orientation of their MP, which also simplifies locus evaluation and eases its representation.

References

References
1.
Kong
,
X.
, and
Gosselin
,
C.
,
2007
,
Type Synthesis of Parallel Mechanisms
, Vol. 33,
Springer
, Berlin.
2.
Li
,
W.
, and
Angeles
,
J.
,
2017
, “
A Novel Three-Loop Parallel Robot With Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051003
.
3.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
4.
Fichter
,
F.
,
1986
, “
A Stewart Platform-Based Manipulator—General-Theory and Practical Construction
,”
Int. J. Rob. Res.
,
5
(
2
), pp.
157
182
.
5.
Alizade
,
R. I.
,
Tagiyev
,
N. R.
, and
Duffy
,
J.
,
1994
, “
A Forward and Reverse Displacement Analysis of a 6-DOF in-Parallel Manipulator
,”
Mech. Mach. Theory
,
29
(
1
), pp.
115
124
.
6.
Behi
,
F.
,
1988
, “
Kinematic Analysis for a Six-Degree-of-Freedom 3-PRPS Parallel Mechanism
,”
IEEE J. Rob. Autom.
,
4
(
5
), pp.
561
565
.
7.
Kim
,
J.
,
Park
,
F. C.
,
Ryu
,
S. J.
,
Kim
,
J.
,
Hwang
,
J. C.
,
Park
,
C.
, and
Iurascu
,
C. C.
,
2001
, “
Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining
,”
IEEE Trans. Rob. Autom.
,
17
(
4
), pp.
423
434
.
8.
Kim
,
J.
,
Hwang
,
J. C.
,
Kim
,
J. S.
,
Iurascu
,
C. C.
,
Park
,
F. C.
, and
Cho
,
Y. M.
,
2002
, “
Eclipse II: A New Parallel Mechanism Enabling Continuous 360-Degree Spinning plus Three-Axis Translational Motions
,”
IEEE Trans. Rob. Autom.
,
18
(
3
), pp.
367
373
.
9.
Sorli
,
M.
,
Ferraresi
,
C.
,
Kolarski
,
M.
,
Borovac
,
B.
, and
Vukobratovic
,
M.
,
1997
, “
Mechanics of Turin Parallel Robot
,”
Mech. Mach. Theory
,
32
(
1
), pp.
51
77
.
10.
Chen
,
C.
,
Gayral
,
T.
,
Caro
,
S.
,
Chablat
,
D.
,
Moroz
,
G.
, and
Abeywardena
,
S.
,
2012
, “
A Six Degree of Freedom Epicyclic-Parallel Manipulator
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041011
.
11.
Liu
,
X. J.
, and
Wang
,
J. S.
,
2003
, “
Some New Parallel Mechanisms Containing the Planar Four-Bar Parallelogram
,”
Int. J. Rob. Res.
,
22
(
9
), pp.
717
732
.
12.
Ebert-Uphoff
,
I.
,
Gosselin
,
C. M.
, and
Laliberté
,
T.
,
2000
, “
Static Balancing of Spatial Parallel Platform Mechanisms—Revisited
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
43
51
.
13.
Monsarrat
,
B.
, and
Gosselin
,
C. M.
,
2003
, “
Workspace Analysis and Optimal Design of a 3-Leg 6-DOF Parallel Platform Mechanism
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
954
966
.
14.
Wu
,
Y. N.
, and
Gosselin
,
C. M.
,
2004
, “
Synthesis of Reactionless Spatial 3-DOF and 6-DOF Mechanisms Without Separate Counter-Rotations
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
625
642
.
15.
Wu
,
Y. N.
, and
Gosselin
,
C.
,
2005
, “
Design of Reactionless 3-DOF and 6-DOF Parallel Manipulators Using Parallelepiped Mechanisms
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
821
833
.
16.
Yang
,
G.
,
Chen
,
I. M.
,
Chen
,
W.
, and
Lin
,
W.
,
2004
, “
Kinematic Design of a Six-DOF Parallel-Kinematics Machine With Decoupled-Motion Architecture
,”
IEEE Trans. Rob.
,
20
(
5
), pp.
876
884
.
17.
Jin
,
Y.
,
Chen
,
I. M.
, and
Yang
,
G. L.
,
2006
, “
Kinematic Design of a 6-DOF Parallel Manipulator With Decoupled Translation and Rotation
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
545
551
.
18.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2008
, “
Type Synthesis of Six-DOF Wrist-Partitioned Parallel Manipulators
,”
ASME J. Mech. Des.
,
130
(
6
), p.
062302
.
19.
Jin
,
Y.
,
Chen
,
I. M.
, and
Yang
,
G. L.
,
2009
, “
Kinematic Design of a Family of 6-DOF Partially Decoupled Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
5
), pp.
912
922
.
20.
Azulay
,
H.
,
Mahmoodi
,
M.
,
Zhao
,
R.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2014
, “
Comparative Analysis of a New 3xPPRS Parallel Kinematic Mechanism
,”
Rob. Comput.-Integr. Manuf.
,
30
(
4
), pp.
369
378
.
21.
Fu
,
J.
,
Gao
,
F.
,
Pan
,
Y.
, and
Du
,
H.
,
2015
, “
Forward Kinematics Solutions of a Special Six-Degree-of-Freedom Parallel Manipulator With Three Limbs
,”
Adv. Mech. Eng.
,
7
(
5
), pp.
1
11
.
22.
Daniali
,
H. M.
,
Zsombor-Murray
,
P.
, and
Angeles
,
J.
,
1996
, “
Direct Kinematics of Double-Triangular Parallel Manipulators
,”
Mathematica Pannonica
,
7
(1), pp. 79–96.
23.
Yoon
,
J.
, and
Ryu
,
J.
,
2001
, “
Design, Fabrication, and Evaluation of a New Haptic Device Using a Parallel Mechanism
,”
IEEE/ASME Trans. Mechatronics
,
6
(
3
), pp.
221
233
.
24.
Yoon
,
J. W.
,
Ryu
,
J.
, and
Hwang
,
Y. K.
,
2010
, “
Optimum Design of 6-DOF Parallel Manipulator With Translational/Rotational Workspaces for Haptic Device Application
,”
J. Mech. Sci. Technol.
,
24
(
5
), pp.
1151
1162
.
25.
Chen
,
C.
,
Heyne
,
W. J.
, and
Jackson
,
D.
,
2010
, “
A New 6-DOF 3-Legged Parallel Mechanism for Force-Feedback Interface
,”
IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications
(
MESA
), QingDao, China, July 15–17, pp.
539
544
.
26.
Harada
,
T.
,
Friedlaender
,
T.
, and
Angeles
,
J.
,
2014
, “
The Development of an Innovative Two-DOF Cylindrical Drive: Design, Analysis and Preliminary Tests
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
6338
6344
.
27.
Hunt
,
K. H.
,
1986
, “
Special Configurations of Robot-Arms Via Screw Theory
,”
Robotica
,
4
(3), pp.
171
179
.
28.
Gibson
,
C. G.
, and
Hunt
,
K. H.
,
1990
, “
Geometry of Screw Systems—1: Screws—Genesis and Geometry
,”
Mech. Mach. Theory
,
25
(
1
), pp.
1
10
.
29.
Angeles
,
J.
, and
López-Cajún
,
C. S.
,
1992
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Rob. Res.
,
11
(
6
), pp.
560
571
.
30.
Moreno
,
H. A.
,
Saltaren
,
R.
,
Carrera
,
I.
,
Puglisi
,
L.
, and
Aracil
,
R.
,
2012
, “
Performance Indices for Robotic Manipulators: A Review of the State of the Art
,”
Rev. Iberoam. Autom. Inf. Ind.
,
9
(
2
), pp.
111
122
.
31.
Patel
,
S.
, and
Sobh
,
T.
,
2015
, “
Manipulator Performance Measures—A Comprehensive Literature Survey
,”
J. Intell. Rob. Syst.
,
77
(
3–4
), pp.
547
570
.
32.
Zanganeh
,
K. E.
, and
Angeles
,
J.
,
1997
, “
Kinematic Isotropy and the Optimum Design of Parallel Manipulators
,”
Int. J. Rob. Res.
,
16
(
2
), pp.
185
197
.
33.
Fassi
,
I.
,
Legnani
,
G.
, and
Tosi
,
D.
,
2005
, “
Geometrical Conditions for the Design of Partial or Full Isotropic Hexapods
,”
J. Field Rob.
,
22
(
10
), pp.
507
518
.
34.
Legnani
,
G.
,
Fassi
,
I.
,
Giberti
,
H.
,
Cinquemani
,
S.
, and
Tosi
,
D.
,
2012
, “
A New Isotropic and Decoupled 6-DoF Parallel Manipulator
,”
Mech. Mach. Theory
,
58
, pp.
64
81
.
35.
Tsai
,
K.
, and
Lee
,
T.
,
2009
, “
Synthesis of 6-DOF 3-Chain Isotropic Parallel Manipulators
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
(
ReMAR
), London, June 22–24, pp.
215
220
.http://ieeexplore.ieee.org/document/5173833/
36.
Daniali
,
H. R. M.
,
Zsombor-Murray
,
P. J.
, and
Angeles
,
J.
,
1995
, “
The Kinematics of Spatial Double-Triangular Parallel Manipulators
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
658
661
.
37.
Daniali
,
H. R. M.
,
1996
, “
Contributions to the Kinematic Synthesis of Parallel Manipulators
,”
Ph.D. thesis
, McGill University, Montreal, QC, Canada.http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&object_id=28852&local_base=GEN01-MCG02
38.
Gan
,
D. M.
,
Liao
,
Q. Z.
,
Dai
,
J. S.
, and
Wei
,
S. M.
,
2010
, “
Design and Kinematics Analysis of a New 3CCC Parallel Mechanism
,”
Robotica
,
28
(7), pp.
1065
1072
.
39.
Toz
,
M.
, and
Kucuk
,
S.
,
2014
, “
Dimensional Optimization of 6-DOF 3-CCC Type Asymmetric Parallel Manipulator
,”
Adv. Rob.
,
28
(
9
), pp.
625
637
.http://www.tandfonline.com/doi/abs/10.1080/01691864.2014.884935
40.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
41.
Duffy
,
J.
,
1980
,
Analysis of Mechanisms and Robot Manipulators
,
Edward Arnold
,
London
.
42.
Brand
,
L.
,
2006
,
Advanced Calculus: An Introduction to Classical Analysis
,
Dover Publications
,
Mineola, NY
.
43.
Angeles
,
J.
,
2006
, “
Is There a Characteristic Length of a Rigid-Body Displacement?
,”
Mech. Mach. Theory
,
41
(
8
), pp.
884
896
.
44.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Rob. Res.
,
1
(
1
), pp.
4
17
.
45.
Khan
,
W. A.
, and
Angeles
,
J.
,
2006
, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
168
178
.
46.
Angeles
,
J.
,
2014
,
Fundamentals of Robotic Mechanical Systems (Theory, Methods, Algorithms)
,
4th ed.
,
Springer
,
New York
.
You do not currently have access to this content.