The radial folding ratio of single-vertex multicrease rigid origami, from the folded configuration to the unfolded configuration, is satisfactory. In this study, we apply two approaches to add nonzero thickness for this kind of origami and identify different geometrical characteristics. Then, the model of the secondary folding origami, which can help to further decrease the folding ratio, is constructed. We apply the method of constraining the edges of the panels on prescribed planes to geometrically obtain the kinematic model. Based on the kinematic model and the screw theory, the nonzero thickness origami is transformed into the deployable mechanism with one degree-of-freedom (1DOF). Other similar mechanisms can be derived based on this basic configuration. The computer-aided design examples are presented to indicate the feasibility.

References

References
1.
Abel
,
Z.
,
Cantarella
,
J.
,
Demaine
,
E. D.
,
Eppstein
,
D.
,
Hull
,
T. C.
,
Ku
,
J. S.
,
Lang
,
R. J.
, and
Tachi
,
T.
,
2016
, “
Rigid Origami Vertices: Conditions and Forcing Sets
,”
J. Comput. Geom.
,
7
(
1
), pp.
171
184
.
2.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. Math. Phys. Eng. Sci.
,
466
(
2119
), pp.
2155
2174
.
3.
Liu
,
S.
,
Weilin
,
L. V.
,
Chen
,
Y.
, and
Guoxing
,
L. U.
,
2016
, “
Deployable Prismatic Structures With Rigid Origami Patterns
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031002
.
4.
Liu
,
X.
,
Gattas
,
J. M.
, and
Chen
,
Y.
,
2016
, “
One-DOF Superimposed Rigid Origami With Multiple States
,”
Sci. Rep.
,
6
, p.
36883
.
5.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
6.
Tachi
,
T.
,
2011
, “
Rigid Foldable Thick Origami
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
, CRC Press, Boca Raton, FL, pp.
253
264
.
7.
Edmondson
,
B. J.
,
Lang
,
R. J.
, and
Magleby
,
S. P.
,
2014
, “An Offset Panel Technique for Thick Rigidily Foldable Origami,”
ASME
Paper No. DETC2014-35606.
8.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
9.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2014
, “A Novel 4-DOFs Origami Enabled, SMA Actuated, Robotic End-Effector for Minimally Invasive Surgery,” IEEE International Conference on Robotics and Automation (
ICRA
2014), Hong Kong, China, May 31–June 7, pp.
2844
2849
.
10.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
11.
Belke
,
C. H.
, and
Paik
,
J.
,
2017
, “
Mori: A Modular Origami Robot
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2153
2164
.
12.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2015
, “
Helical Kirigami-Enabled Centimeter-Scale Worm Robot With Shape-Memory-Alloy Linear Actuators
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021014
.
13.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
14.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.
15.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Cable-Stiffened Pantographic Deployable Structures—Part 2: Mesh Reflector
,”
AIAA J.
,
35
(
8
), pp.
1348
1355
.
16.
Chu
,
Z.
,
Deng
,
Z.
,
Qi
,
X.
, and
Li
,
B.
,
2014
, “
Modeling and Analysis of a Large Deployable Antenna Structure
,”
Acta Astronaut.
,
95
(
1
), pp.
51
60
.
17.
Qi
,
X.
,
Huang
,
H.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
A Large Ring Deployable Mechanism for Space Satellite Antenna
,”
Aerosp. Sci. Technol.
,
58
, pp.
498
510
.
18.
Chen
,
Y.
,
2003
, “Design of Structural Mechanisms,”
Ph.D. thesis
, University of Oxford, Oxford, UK.http://www.eng.ox.ac.uk/civil/publications/theses/chen.pdf
19.
Liu
,
S. Y.
, and
Chen
,
Y.
,
2009
, “
Myard Linkage and Its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
20.
Qi
,
X.
,
Huang
,
H.
,
Miao
,
Z.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022302
.
21.
Huang
,
H.
,
Deng
,
Z.
, and
Li
,
B.
,
2012
, “
Mobile Assemblies of Large Deployable Mechanisms
,”
JSME J. Space Eng.
,
5
(
1
), pp.
1
14
.
22.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2004
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
23.
Huang
,
Z.
,
Zhao
,
Y. S.
, and
Zhao
,
T. S.
,
2014
,
Advanced Spatial Mechanism
,
Higher Education Press
,
Beijing, China
, Chap. 2.
You do not currently have access to this content.