This paper presents a screw theory based approach for the analysis and synthesis of flexible joints using wire and sheet flexures. The focus is on designing flexure systems that have a simple geometry, i.e., a parallel constraint pattern. We provide a systematic formulation of the constraint-based approach, which has been mainly developed by precision engineering experts in designing precision machines. The two fundamental concepts in the constraint-based approach, constraint and freedom, can be represented mathematically by a wrench and a twist in screw theory. For example, an ideal wire flexure applies a translational constraint, which can be described by a wrench of pure force. As a result, the design rules of the constraint-based approach can be systematically formulated in the format of screws and screw systems. Two major problems in compliant mechanism design, constraint pattern analysis, and constraint pattern design are discussed with examples in details. Lastly, a case study is provided to demonstrate the application of this approach to the design of compliant prismatic joints. This innovative method paves the way for introducing computational techniques into the constraint-based approach for the synthesis and analysis of compliant mechanisms.

1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley-Interscience
,
New York
.
2.
Howell
,
L. L.
, and
Midha
,
A.
, 1995, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
117
(
1
), pp.
156
165
.
3.
Su
,
H. -J.
, 2009, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
1942-4302,
1
(
2
), p.
021008
.
4.
Xu
,
P.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Hu
,
Y.
, 2009, “
A Novel Family of Leaf-Type Compliant Joints: Combination of Two Isosceles-Trapezoidal Flexural Pivots
,”
ASME J. Mech. Rob.
1942-4302,
1
(
2
), p.
021005
.
5.
Ananthasuresh
,
G. K.
, and
Kota
,
S.
, 1995, “
Designing Compliant Mechanisms
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
117
(
11
), pp.
93
96
.
6.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
(
2
), pp.
238
245
.
7.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
(
4
), pp.
493
524
.
8.
Hull
,
P. V.
, and
Canfield
,
S.
, 2006, “
Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
337
348
.
9.
Zhou
,
H.
, and
Ting
,
K. -L.
, 2005, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
753
759
.
10.
Howell
,
L. L.
, and
Midha
,
A.
, 1996, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
118
(
1
), pp.
121
125
.
11.
Su
,
H. -J.
, and
McCarthy
,
J. M.
, 2006, “
A Polynomial Homotopy Formulation of the Inverse Static Analysis of Planar Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
776
786
.
12.
Wang
,
M. Y.
,
Chen
,
S.
,
Wang
,
X.
, and
Mei
,
Y.
, 2005, “
Design of Multimaterial Compliant Mechanisms Using Level-Set Methods
,”
ASME J. Mech. Des.
0161-8458,
127
(
5
), pp.
941
956
.
13.
Kim
,
C. J.
,
Kota
,
S.
, and
Moon
,
Y. -M.
, 2006, “
An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
128
(
3
), pp.
542
550
.
14.
Su
,
H. -J.
, and
McCarthy
,
J. M.
, 2007, “
Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy
,”
ASME J. Mech. Des.
0161-8458,
129
(
10
), pp.
1094
1098
.
15.
Wang
,
M. Y.
, 2009, “
A Kinetoelastic Formulation of Compliant Mechanism Optimization
,”
ASME J. Mech. Rob.
1942-4302,
1
(
2
), p.
021011
.
16.
Maxwell
,
J. C.
, 1890,
General Considerations Concerning Scientific Apparatus
,
Dover
,
New York
.
17.
Blanding
,
D. L.
, 1999,
Exact Constraint: Machine Design Using Kinematic Processing
,
ASME
,
New York
.
18.
Hale
,
L. C.
, 1999, “
Principles and Techniques for Designing Precision Machines
,” Ph.D. thesis, MIT, Cambridge, MA.
19.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
(
8
), pp.
816
830
.
20.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
, 2009, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
0141-6359, July.
21.
Shai
,
O.
, and
Pennock
,
G. R.
, 2006, “
A Study of the Duality Between Planar Kinematics and Statics
,”
ASME J. Mech. Des.
0161-8458,
128
(
3
), pp.
587
598
.
22.
Ball
,
R. S.
, 1998,
The Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
, Original Work Published in 1876.
23.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
24.
Phillips
,
J.
, 1984,
Freedom in Machinery. Volume 1, Introducing Screw Theory
,
Cambridge University Press
,
Cambridge, UK
.
25.
Phillips
,
J.
, 1990,
Freedom in Machinery. Volume 2, Screw Theory Exemplified
,
Cambridge University Press
,
Cambridge, UK
.
26.
Lipkin
,
H.
, and
Patterson
,
T.
, 1992, “
Geometric Properties of Modelled Robot Elasticity—Part I: Decomposition
,”
Proceedings of ASME Design Technical Conferences
, DE-Vol.
45
, pp.
187
193
.
27.
Lipkin
,
H.
, and
Patterson
,
T.
, 1992, “
Geometric Properties of Modelled Robot Elasticity—Part II: Decomposition
,”
Proceedings of ASME Design Technical Conferences
, DE-Vol.
45
, pp.
179
185
.
28.
Patterson
,
T.
, and
Lipkin
,
H.
, 1993, “
Structure of Robot Compliance
,”
ASME J. Mech. Des.
0161-8458,
115
(
3
), pp.
576
580
.
29.
Huang
,
S.
, and
Schimmels
,
J. M.
, 1998, “
The Bounds and Realization of Spatial Stiffnesses Archieved With Simple Springs Connected in Parallel
,”
IEEE Trans. Robot. Autom.
,
14
(
3
), pp.
466
475
. 1042-296X
30.
Huang
,
S.
, and
Schimmels
,
J. M.
, 2000, “
The Bounds and Realization of Spatial Compliance Archieved With Simple Serial Elastic Mechanisms
,”
IEEE Trans. Robot. Autom.
,
16
(
1
), pp.
99
103
. 1042-296X
31.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
220
229
.
32.
Adams
,
J. D.
, and
Whitney
,
D. E.
, 2001, “
Application of Screw Theory to Constraint Analysis of Mechanical Assemblies Joined by Features
,”
ASME J. Mech. Des.
0161-8458,
123
(
1
), pp.
26
32
.
33.
Smith
,
D.
, 2003, “
Constraint Analysis of Assemblies Using Screw Theory and Tolerance Sensitivities
,” MS thesis, Brigham Young University, Provo, UT.
34.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-DOF Translational Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
0161-8458,
126
(
1
), pp.
83
92
.
35.
Kim
,
C. J.
, 2008, “
Functional Characterization of Compliant Building Blocks Utilizing Eigentwists and Eigenwrenches
,”
Proceedings of ASME IDETC/CIE 2008
, New York, August 3–6.
36.
McCarthy
,
J. M.
, 2000,
Geometric Design of Linkages
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.