A cable-driven mechanism based on the idea of BetaBot (2005, “A New Cable-Based Parallel Robot With Three Degrees of Freedom,” Multibody Syst. Dyn., 13, pp. 371–383) is analyzed and geometrical description of its workspace boundary is found. In this mechanism, the cable arrangement eliminates the rotational motions leaving the moving platform with three translational motions. The mechanism has potentials for large scale manipulation and robotics in harsh environments. A detailed analysis of the tensionable workspace of the mechanism is presented. The mechanism, in a tensionable position, can develop tensile forces in all cables to maintain its rigidity under arbitrary external loading. A set of conditions on the geometry of the mechanism is proposed for which the tensionable workspace becomes a well defined convex polyhedron. The geometrical shape of the workspace is then described and the tensionability of the mechanism inside the workspace is proved. The proof is quite general and based on a geometrical approach.

1.
Su
,
Y. X.
,
Duan
,
B. Y.
,
Nan
,
R. D.
, and
Peng
,
B.
, 2001, “
Development of a Large Parallel-Cable Manipulator for the Feed-Supporting System of a Next-Generation Large Radio Telescope
,”
J. Rob. Syst.
0741-2223,
18
(
11
), pp.
633
643
.
2.
Albus
,
J.
,
Bostelman
,
R.
, and
Dagalakis
,
N.
, 1993, “
The NIST Robocrane
,”
J. Rob. Syst.
0741-2223,
10
, pp.
709
724
.
3.
Bostelman
,
R.
,
Albus
,
J.
,
Pagalakis
,
N.
,
Jacoff
,
A.
, and
Gross
,
J. L.
, 1994, “
Applications of the NIST ROBOCRANE
,”
Robotics and Manufacturing
,
5
, pp.
403
407
.
4.
Kawamura
,
S.
,
Kino
,
H.
, and
Won
,
C.
, 2000, “
High Speed Manipulation by Using Parallel Wire-Driven Robots
,”
Robotica
0263-5747,
18
, pp.
13
21
.
5.
Landsberger
,
S. E.
, and
Shanmugasundram
,
P.
, 1992, “
Workspace of a Parallel Link Crane
,”
Proceedings of IMACS/SICE International Symposium on Robotics, Mechatronics and Manufacturing Systems
, pp.
479
486
.
6.
Ming
,
A.
, and
Higuchi
,
T.
, 1994, “
Study on Multiple Degree-of-Freedom Positioning Mechanism Using Wires (Part 1)
,”
Int. J. Jpn. Soc. Precis. Eng.
0916-782X,
28
, pp.
131
138
.
7.
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
, 2004, “
Force-Feasible Workspace Analysis for Underconstrained, Point-Mass Cable Robots
,”
IEEE International Conference on Robotics and Automation
, Vol.
5
, pp.
4956
4962
.
8.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
, 2006, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Robot.
,
22
(
5
), pp.
890
902
. 1546-1904
9.
Verhoeven
,
R.
,
Hiller
,
M.
, and
Tadokoro
,
S.
, 1998, “
Workspace, Stiffness, Singularities and Classification of Tendon-Driven Stewart Platforms
,”
International Symposium on Advances in Robot Kinematics
, Strobl, Austria, pp.
105
114
.
10.
Verhoeven
,
R.
,
Hiller
,
M.
, and
Tadokoro
,
S.
, 1998, “
Workspace of Tendon-Driven Stewart Platforms: Basics, Classification, Details on the Planar 2-DOF Class
,”
International Conference on Motion and Vibration Control MOVIC
, Vol.
3
, pp.
871
876
.
11.
Verhoeven
,
R.
, and
Hiller
,
M.
, 2002, “
Estimating the Controllable Workspace of Tendon-Based Stewart Platforms
,”
Proceedings of the International Symposium on Advances in Robot Kinematics
, Portoroz, Slovenia, pp.
277
284
.
12.
Ebert-Uphoff
,
I.
, and
Voglewede
,
P. A.
, 2004, “
On the Connections Between Cable-Driven Robots, Parallel Manipulators and Grasping
,”
Proceedings of IEEE Conference on Robotics and Automation
, pp.
4521
4526
.
13.
Bosscher
,
P.
, and
Ebert-Uphoff
,
I.
, 2004, “
Wrench-Based Analysis of Cable-Driven Robots
,”
Proceedings of IEEE Conference on Robotics and Automation
, pp.
4950
4955
.
14.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G.
,
Kurbanhusen
,
M. S.
, and
Chen
,
I. -M.
, 2006, “
Force-Closure Workspace Analysis of Cable-Driven Parallel Mechanisms
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
53
69
.
15.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
, 2006, “
Analysis of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
IEEE Trans. Robot.
,
22
(
3
), pp.
434
445
. 1546-1904
16.
Stump
,
E.
, and
Kumar
,
V.
, 2006, “
Workspaces of Cable-Actuated Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
159
168
.
17.
Gouttefarde
,
M.
, and
Gosselin
,
C.
, 2004, “
On the Properties and the Determination of the Wrench Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
Proceedings of the ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference
, Vol.
2
, pp.
337
346
.
18.
Behzadipour
,
S.
, and
Khajepour
,
A.
, 2005, “
A New Cable-Based Parallel Robot With Three Degrees of Freedom
,”
Multibody Syst. Dyn.
1384-5640,
13
, pp.
371
383
.
19.
Kossowski
,
C.
, and
Notash
,
L.
, 2002, “
CAT4 (Cable Actuated Truss—4 Degrees of Freedom): A Novel 4 DOF Cable Actuated Parallel Manipulator
,”
J. Rob. Syst.
0741-2223,
19
, pp.
605
615
.
20.
Bosscher
,
P.
,
et al.
, 2007, “
Cable-Suspended Robotic Contour Crafting System
,”
Autom. Constr.
0926-5805,
17
(
1
), pp.
45
55
.
21.
Behzadipour
,
S.
, and
Khajepour
,
A.
, 2006, “
Cable-Based Robot Manipulators With Translational Degrees of Freedom
,”
Industrial Robotics: Theory, Modelling and Control
,
S.
Cubero
, ed.,
Advanced Robotic Systems International
, pp.
211
236
.
22.
Ning
,
K.
,
Zhao
,
M.
, and
Liu
,
J.
, 2006, “
A New Wire-Driven Three Degree-of-Freedom Parallel Manipulator
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
816
819
.
23.
Clavel
,
R.
, 1991 “
Conception d'un robot parallèle rapide à 4 degrés de liberté
,” Ph.D. thesis, EPFL, Lausanne, Switzerland.
24.
Tsai
,
L. W.
, 1999,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
.
You do not currently have access to this content.