In this paper, design strategies are presented for the topology synthesis of dual input-single output compliant mechanisms. Decomposition methods are proposed to yield tractable subproblems to achieve motion requirements. The methods make use of the single point synthesis, which effectively generates topologies satisfying the motion requirements at one point by assembling compliant building blocks. In this paper, the compliant deviation angle is proposed to measure the ability of building blocks to transmit load with minimal storage of strain energy. The design strategies are versatile in allowing the designer to incorporate auxiliary design considerations and to synthesize mechanism that traverse a locus of output displacements. The building block approach pursued in this paper provides crucial insight to augment designer understanding and ability.

1.
Awtar
,
S.
, 2004, “
Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms
,” Sc.D. thesis, MIT, Cambridge, MA.
2.
Kim
,
C. J.
, 2005, “
A Conceptual Approach to the Computational Synthesis of Compliant Mechanisms
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
3.
Smith
,
S. T.
, and
Chetwynd
,
D. G.
, 1992,
Foundations of Ultraprecision Mechanism Design
,
Gordon and Breach
,
New York
.
4.
Smith
,
S. T.
, 2000,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach
,
New York
.
5.
Blanding
,
D. L.
, 1999,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME
,
New York
.
6.
Hale
,
L.
, 1999, “
Principles and Techniques for Designing Precision Machines
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
7.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
8.
Murphy
,
M.
,
Midha
,
A.
, and
Howell
,
L. L.
, 1996, “
The Topological Synthesis of Compliant Mechanisms
,”
Mech. Mach. Theory
0094-114X,
31
(
2
), pp.
185
199
.
9.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
12
), pp.
2683
2706
.
10.
Lu
,
K. -J.
, and
Kota
,
S.
, 2006, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
(
5
), pp.
1080
1091
.
11.
Bendsoe
,
M.
, and
Sigmund
,
O.
, 2003,
Topology Optimization-Theory, Method and Applications
,
Springer
,
New York
.
12.
Canfield
,
S.
, and
Frecker
,
M.
, 2000, “
Topology Optimization of Compliant Mechnical Amplifyers for Piezoelectric Actuators
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
4
), pp.
269
279
.
13.
Xu
,
D.
, and
Ananthasuresh
,
G.
, 2003, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
253
261
.
14.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
(
8
), pp.
816
830
.
15.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
, 2009, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT)–Part I: Principles
,”
Precis. Eng.
0141-6359, July.
16.
Kim
,
C. J.
,
Moon
,
Y. -M.
, and
Kota
,
S.
, 2008, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
022308
.
17.
Sclatar
,
N.
, and
Chironis
,
N.
, 2006,
Mechanisms and Mechanical Devices Sourcebook
,
4th ed.
,
McGraw-Hill
,
New York
.
18.
Kota
,
S.
,
Lu
,
K. -J.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
, 2005, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
981
989
.
19.
Frecker
,
M.
,
Powell
,
K.
, and
Haluck
,
R.
, 2005, “
Design of a Multifunctional Compliant Instrument for Minimally Invasive Surgery
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
990
993
.
You do not currently have access to this content.